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FOREWORD

This book discusses a fairly wide range of problems in mechanics con-

nected with the practical application of gyroscopes.

The classical studies of A.N. Krylov and B. V. Bulgakov on the theory

of gyroscopes are insufficient for solving the problems encountered in the

development of new gyroscopic systems. Stricter standards of accuracy

have made it necessary to take into account factors formerly neglected and

to explain previously undetected experimental facts. New problems in kine-

matics, the applied theory of elasticity, the theory of oscillations and sta-

bility, and the theory of gyroscopes proper have thus arisen.

The material of this book is naturally diverse.

The first chapter deals with the solution of the geometric problems of

the kinematics of gimbal systems:__ Important, practical problems are dis-
cussed such as the errors caused by the application of simplified schemes

or by the imperfect coordination of gimbal systems operating together, and

the stabilization errors caused by inaccurate mounting of the instruments.

Definitions are given of the pitch and roll angles of the ship and of its course

as functions of the angles recorded by the gyroscopic instruments. The the-

ory of small rotations of a rigid body is applied to the determination of the

stabilization errors. A particular problem in the theory of finite rotations

is treated in a simplified manner. The treatment given differs from that of

A.N. Krylov, B.I. Kudrevich, and G. V. Chekhovich in that spherical tri-

gonometry is not used. The problem of the so-called gimbal error is solved

purely analytically.

chapter deals, likewise analytically, with_he geometric prob-The second

lems connected with the accuracy of the orientation of objects having heel

and trim, solves the problem of the orientation of the German V-2 missile

in the case of alignment errors, makes general remarks on the methods of

solving problems on finite rotations of rigid bodies, and ends by consider-

ing the motion of gyroscopic devices from the point of view of the mechanics

of systems with nonholonomic constraints. This last leads to some interest-

ing practical conclusions.

The third chapter illustrates the importance of making the components of

gyroscopic systems and gimbals sufficiently rigid. Components which

superficially seem extremely rigid suffer frequently excessive deformations

when the tolerances in the manufacture of assemblies for high-accuracy

gyroscopic systems are taken into account. The problems discussed are the

displacement of the gyros' center of gravity due to rotor deformation by cen-

trifugal forces, the deformation of gimbal rings and bows, the misalignment

of housings during mounting, and the influence of the rigidity of the gimbals

on the frequency of nutations. The theory of the discontinuous motion of

kinematic transmissions caused by insufficient rigidity is developed. The



chapter ends with general considerations on the rigidity of shock absorbers

(dampers} of gyroscopic and other instruments installed on moving objects,

and on the advisability of damping in general.

The fourth chapter begins with an exposition of the methods for establish-

ing the equations of gyroscopic systems. The method proposed here for de-

riving the equations of motion of the gyro from Euler's dynamic equations

seems to be the simplest and most obvious method. Its simplicity is ob-

tained by renouncing the use of Euler angles and his kinematic equations

as unsuited for the theory of gyroscopes, and by adopting Krylov's angles.

This chapter deals mainly with the theory of certain characteristic gyro-

scopic devices whose behavior can be described by means of linear differ-

ential equations. A new theory is given of the gyrovertical with air suspen-

sion. Means for reducing the error of the instrument during rolling, and

methods for compensating the influence of maneuvers and drift on the

instrument are given.

A theory, similar in many respects to the preceding, is developed for

gyroscopic systems consisting of two gyros: one with a vertical axis and

constant speed of rotation, the second with a horizontal axis and a speed of

rotation varying in proportion to the ship's linear speed. The theory of this

last device takes into account Coulomb friction and the operation of the fol-

low-up system.

The idea of separating the system of differential equations into two quasi-

independent subsystems is carried out for a relatively simple gyroscopic

device used for equalizing the heel of moving objects. Deriving the equa-

tions of motion of this device by the Lagrange method is too tedious. The

application of the angular momentum theorem necessitates fairly precise

calculations of the interplay of forces in the gyro gimbals. This method

for the derivation of the equations is given in the text.

The chapter ends by giving the general theory of the double-gyro frame,

which is the principal element of many gyroscopic devices.

The fifth chapter treats more thoroughly a number of problems men-

tioned in the preceding chapter, taking into account the nonlinear character

of the forces acting on gyroscopic systems. As a result, new facts are ex-

posed, both in the behavior of gyroscopic systems and in the assessment of

the influence of many parameters on the accuracy and stability.

The development of the theory of heel equalizers leads to the study of a

new kind of motion in the phase plane, the so-called sliding motion.

Two approximative methods of solution are given in this chapter: the

energy method and the method of successive approximations.

The first method is applied to the study of the gyro frame stability, and

also, in the course of its development, to the solution of many other prob-

lems of the oscillations of electromechanical systems. In particular the

influence of certain parameters, not appearing explicitly in the stability

condition derived in the preceding chapter (which was based on the linear

theory), on the damping of the gyro frame oscillations is made clear.

The second method is applied to the study of forced oscillations of the

gyro frame and to the calculation of the errors of a directional-gyro

scheme.

The sixth and last chapter of the book deals with a number of separate

problems arising during the study of the behavior of gyroscopic devices

under laboratory conditions•



• One of these is the problem of the wander of the gyrohorizon during

roiling when the method of contact control by the corrective pendulum is

applied. It is solved with the help of probability considerations.

The problem of the influence of yaw on gyrohorizon accuracy was solved

in collaboration with V. I. Kuznetsov. Lack of knowledge of its solution hag

frequently led to erroneous conclusions, in spite of its simplicity and obvi-

ousness.

The problem of the top bow represents an interesting example of apply-

ing the general theorems of mechanics to explaining a phenomenon not easily
understood.

In addition this chapter discusses several small problems whose solu-

tions necessitate taking into account seemingly secondary facts, such as

the vibrational rigidity of the gyro suspension and the accuracy of mounting
the contact instruments.

The chapter ends with the study of a follow-up system having a relatively

large amplifier time-constant. An approximative treatment of the problems

along the lines of Chapter V shows clearly the change in the conditions of

free -oscillations and leads to the establishment of simple stability conditions.

It should be added in conclusion that the formulation of most of the prob-

lems treated in the book is the result of the author's contact with the late

outstanding Soviet engineer N.N. Ostryakov (1904 --1946) and with his gifted

pupils and collaborators.

Several new papers on the theory of gyroscopic systems have been pub-

lished by the author since this book was written (the present monograph

is a second slightly revised edition of the book which was first printed in

1952 in a limited issue). Three of them are given here as appendixes.

The first appendix develops methods for writing the equations of motion

of complex gyroscopic systems by applying the angular momentum theorem

to the gyroscopic system as a whole and to its components. This makes it

possible to obtain these equations in the simplest manner. The usual method

of obtaining these equations by applying the Euler-Lagrange method involves
laborious calculations.

An essential feature of the method given is the introduction of the so-
called basic reference frame (which has a translational motion) and the

auxiliary reference frame. The first is used for calculating the inertia

forces and the angular velocities, while the second serves for writing the

equations themselves in the most convenient form.

The second appendix contains the exact theory of the spatial gyrocom-

pass, proposed by Geckeler. The equations of motion of this instrument

are considerably simplified by introducing as initial system of coordinates

a moving Darboux trihedron on a stationary sphere enclosing the Earth.

The accuracy of the results of the theory of the spatial gyrocompass is im-

proved, and the differential equations of small oscillations of the sensitive

elements are solved for an arbitrary motion of the compass on the Earth.



The author uses the method of introducing a moving trihedron and a non-

revolving sphere in many papers, in particular in establishing the mathe-

matical bases to the theory of inertial navigation. The third appendix deals
with this case.

This appendix gives, apparently for the first time, the equations determin-

ing the position of an object moving arbitrarily on the Earth. Small oscilla-

tions of the stabilized platform of the device are investigated. Inertial navi-

gation during the object's motion at varying altitudes above the Earth's sur-
face is also studied.



Chapter I

GEOMETRY AND KINEMATICS OF

GYROSCOPIC SYSTEMS

S I. Geometry of gimbal suspension systems.

Determination of a ship's pitch and roll angles and its course.

Gimbal error. Bicardan suspensions

Gimbal systems (Cardan suspensions) (Figure 1) are an integral part

of gyro assemblies and of many other instruments. They are used in par-

ticular to create an artificial horizontal platform on a rolling ship. To

that end, the inner gimbal ring is confined to the horizontal plane, either

directly by means of gyroscopes, or by using a forced tilting of the outer

gimbal ring relative to the ship's body and of the inner ring relative to the

outer one through angles specified by special gyroscopic devices.

Consider simultaneously two gimbal systems whose inner rings are

stabilized in the horizontal plane. Let the axis of the outer gimbal ring of

the first system be parallel to the ship's longitudinal axis (Figure 1), and

the axis of the outer gimbal ring of the second system be parallel to the

ship's transversal axis (Figure 2) or, which is the same, perpendicular to

its plane of symmetry.

FIGURE I FIGURE 2

The planes of the outer gimbal rings of the two systems usually form

some angle with the deck of the rolling ship. The angle of tilting of the outer

gimbal ring of the first system relative to the deck is called the ship's

angle of roll and is denoted by _. It is considered as positive when it

corresponds to a counterclockwise tilting of the gimbal ring relative to the

deck, as observed from the ship's bow (as is easily seen, this corresponds

to heel to port)_.

* In nautical language, the heel of the ship to starboard is called positive heel, and is frequently denoted

by 0. The angles 6 and _ are obviously connected by the relarionship0mffim_.

The heel is sometimes understood to mean not the angles of tilting of the outer gimbal ring relative

to the deck, but the angle _ _hich the ship's tramveasal axis forms with the horizontal plane. In this

case tg r == _ tg _ COSa, where 8 = the angle of pitch (cf. below). Neglecting the sign, the heel is then

identicalwith the tikingangle _w of the innergimbal ring,relativeto the outerone of the second system.



The angle of tilting of the outer gimbal ring of the second system re-

lative to the deck is called the ship's angle of pitch and is denoted

by a. It is considered as positive whenit corresponds to a counterclock-

wise tilting of the gimbal ring relative to the deck, as observed from star-

board (this corresponds to trim by the bow, or positive trim, in which case

the stern is raised relative to the bow)*.

The ship's course will be defined later.

Five reference frames will be used: the xyz system fixed to the ship

(the z-axis is directed to starboard parallel to the ship's transversal axis,

the y-axis is directed to the bow parallel to the ship's longitudinal axis,

and the z-axis is directed upward perpendicular to the deck); two systems

z'//z'and z_ySz" fixed to the outer gimbal rings of the first and second sys-

tems respectively; and two systems E,_I_, and },_s_ fixed to the inner gim-

bal rings of the two systems. The axes of the last four systems are so

oriented that all coincide fora_--_0(i.e., when the deck plane xvis hori-

zontal), except in the location of the origin of the zyz system.

q_he y-axis of the x'_z' coordinate system fixed to the outer ring of the

first gimbal system is parallel to the ship's longitudinal axis y (Figures 1

and 3). The ring itself is tilted through an angle _ (roll angle) about the

]/'-axis.

The direction cosines of the z'y'z'system relative to the xyz system are:

z y z

z' _sl_ 0 --stop (I)
y' o t 0

z' sin _ 0 cos

The z'-axis is simultaneously the _,-axis of the _,_],_,coordinate system

fixed to the inner ring of the same gimbal system. The z-axis (or, which

is the same, the }l-axis) is horizontal, since the inner gimbal ring is stabi-

lized in the horizontal plane, and the }i_l plane is therefore horizontal.

We denote by z, the tilting angle of the inner gimbal ring of the first system

in relation to the outer ring (Figure 3). The tilting takes place about the

_1-axis (or, which is the same, about the z'-axis). It will be considered as

positive (a'_0)if the tilting is counterclockwlse when observed from the

positive direction of the axis },(z'), that is from starboard. The direction

cosines of the },_h_, system relative to the x'_/z'system are:

Z' y' g'

E, t 0 0

% 0 cos a' sin a' (2)

_, 0 --sin d cos z'

The direction cosines of the _1_1_ l system relative to the xyz system can

now be found. The following formula is obtained by using the well-known

theorem of analytical geometry on the cosine of the angle between two

straight lines in space:

cos _ ----cos %z'cos Vz'+ cos %;/cos yy' + cos %z'cos yz°.

* The term "trim" is sometimes also applied to the angle _ which the ship's longitudinal axis makes with

the horizontal plane. This angle coincides with the angle of tilting a'of the inner gimbal ring of the first

system relative to the outer ring (Figure 1) and



.Analogous formulas are valid for the other angles. We finally obtain:

x Y z

_1 cos _ 0 --sin p

_h sin at sin _ cos _ sin a rcos p (3)

_1 cos a t sin [3 --sin ar cos _t cos p

After a certain amount of practice, it is obviously easy to derive directly,

by projecting on the axes x, y, and z unit lengths lyingonthe axes |z,_h, and
(Figure 3).

X_ _A _ff_

FIGURE 3 FIGURE 4

Consider now the second gimbal system. The x_-axis of the outer gimbal
ring (Figures 2 and 4) is parallel to the shipls transversal axis, i.e., perpen-

dicular to the ship's plane of symmetry. The ring itself is tilted through an

angle _ (pitch angle) about the x'-axis, the tilting being counterclockwise for

• _0 [viewed from starboard].

The direction cosines of the z"yWz" system relative to the xyz system are:

z y •

t 0 0

I#* 0 cos • sin _, (4)

z" 0 --sin a co6

The inner gimbal ring is tilted relative to the outer ring about the _z-

axis or, which is the same, about the y'-axis (which coincides with the

_h-axis). We denote by _"the tilting angle of the inner ring relative to the
outer ring (Figure 4); this angle will be considered as positive when the

inner ring is tilted counterclockwise when observed from the side of the

positive _12-axis (or, which is the same, of the positive y'-axis), that is,
from the bow.

Since the inner ring is horizontally stabilized according to our assump-
tions, the _s_ plane is horizontal, and therefore the y'-axis, which coin-
cides with the b-axis, is also horizontal.

The direction cosines of the _2_h_ system relative to the x"y'x _r system

are: _ yw

cos _ 0 --sin
(5)

% 0 t 0

sin _' 0 co, Ir



The direction cosines of the }s_]_,_ system relative to the zl/zsystem can

be found from (4) and (5):

z y s

_s COS_' sin • sin _ --cos a sin _"

1lI 0 cos a sin

sin F --sin = cos _ c_s • cos ]_

(6)

The _,_xand }2_]s planes are horizontal according to our assumptions, and

the axes _1 and _ are therefore vertical. It follows that the axes _ and
are parallel, and that their direction cosines relative to thezyzsystem are

respectively equal. Three equations are therefore obtained from (3) and (6):

cos_'sin_= sinp',

--sina'----sln=cosp; _7)

cos=' cos13= cos= cos_.

Each of these equalities follows from the other two. The following two

formulas are obtained by dividing both the second and first equations by the third:

tg _¢-- tg= cos _, (8)

tg _"--- tg _ cos _. (9)

These formulas are independent; they are important in the calculation and

plotting of the tilting angles of the inner rings of the first and second gim-

bal systems relative to their outer rings.
It follows from these formulas that

c_)s_t__ | -- ¢,(_a
¢I + tg2=costp Vl-- sint a sinSl_ '

cos= sin, e_ [I (10)
sin_'=tg= cos p ¢I- sins,,in*p --- V'i-- ,int,,in'p'

and
!

(11)
sin

where
a = Vt --sin'=si.'_. (12)

The value of the radical R is very near to unity for small values of the

angles ¢¢and _. If, for instance, _= 7° and p= 15 °, then

R -" _/t -- 0.t22'- 0-259' _--0.99950,

i.e., R differs from unity by only 0.0005.

Using formulas (10), (11), and (12), the trigonometric functions of the

angles Wand _' can be eliminated from (3) and (6), transforming them into:

z y s

E, co,p 0 --,_p

% _t sin,e_sp stop _5 cos_ _t sin,c_s'p (13)

i ! t
¢q _-cos = sin p --_ sin = cos p _- cos = e_s p



and

x y s

t cm_ 1 I cm'asinp_s "_ -_ cos a sin z sin _ --

'l, 0 cosz sin a (14)
! 1 . 1

_s -_ cos- sin _ --_- sm acmp _-cos _co6 p

Table (13) is most important.

It follows from (3) and (6) (or, which is the same, (13) and (14)) that

when z and _ differ from zero the coordinate systems |I_]ICIand _s are
differently oriented in relation to the ship, and therefore also in space.

Since the axes _I arid _$ of these coordinate systems are parallel, this dif-
ference in the orientation reduces to a relative rotation of the parallel

planes _l_]land EI_sin which the inner rings of the two gimbal systems lie.

We denote this rotation by 7 (Figure 5), and consider it as positive when

the system }_i]_ rotates counterclockwise relative to the system E1_h_zwhen

observed from the positive direction of the _l-axis (or, which is the same,

of the _-axis), i.e., from above.

FIGURE 5

It is easily seen that

sin T = --cos _:'qs-

Also, since

cos}_%= cosI_zcos%z -I- cos_# cos_y -I- cos_z cos%z,

it follows from (3) and (6) (or, which is the same, from (13) and (14)) that

the angle Tis given by

sin T _ sin a sin _. (15)

For small values of a and _ this formula can be replaced by the approxima-
tion

T=_. (16)
It follows from (15) that

cos 7 _ _/t -- sin s a sin s _ _ R. (17)

It is thus seen that if the two gimbal systems are so mounted that the

pivots of the outer ring of the first system are parallel to the ship's longi-

tudinal axis while the pivots of the outer ring of the second system are per-

pendicular to the ship's plane of symmetry, and if the inner rings are then



stabilized by any method in the horizontal plane, the relative rotation of the.

inner rings during the ship's rolling will be determined by (15).

For a pitch angle _= 7 ° and a roll angle _= 15 ° this formula yields:

sin l[= 0.122 •0.259 -_-0.0316, _-----t°48 ',

while the approximate formula (16) gives

T--0.122.0.262---0.0320, (I°500.

It is seen from this example that the angle I[may in many cases be very

large. In order to avoid errors this fact should be taken into account when

any azimuth direction is fixed relative to the inner gimbal rings.

Mount, for instance, on the stabilized inner ring of the first gimbal sys-

tem a directional gyro oriented along the north-south line, and let the _h-

axis {the course line) form a certain angle x with the directional gyro axle

(the ship's course). Reproduce, by means of follow-up systems (servo-

mechanisms), this angle in the second gimbal system as the angle between

the _2-axis and the horizontal optical axis of the sight mounted on this ring.

The ship rolling will be accompanied by a movement of this optical axis in

the horizontal plane. The axis will make an angle _ with the north-south

line; the value of this angle is given by (15).

The fact that the stabilized rings of differently mounted gimbal systems

rotate relative to each other was detected at the end of the thirties and re-

ceived the name gimbal error (Chekhovich).

The problem of the gimbal error will later be examined more generally

when the pivots of the outer gimbal rings of the two systems are not directed

along the deck axes and form an arbitrary angle.

In order to avoid gimbal errors, the outer gimbal rings of the systems,

which serve to stabilize the inner ring in the horizontal plane, are usually

so disposed that their pivots are parallel to the ship's longitudinal axis (as

was the case with the first of the above-considered two gimbal systems).

The _h-axis, fixed to the inner ring of this gimbal system, is called the

ship's course line. This axis is parallel to the projection of the ship's

longitudinal axis on the horizontal plane; in the case of zero pitch angle a,

it is parallel to the ship's longitudinal axis. The angle between the north

direction and the ship's course line is called the ship's course and

is denoted by x (Figure 6). An increase of the angle x corresponds to a

veering of the ship to starboard (a clockwise rotation when observed from

above)-"% The angle x is measured and indicated on the repeaters of the

ship's gyrocompasses.

The system of angles ,,,_, z defines uniquely, for a given ship location,

the orientation of the ship as a rigid body in its rotational motion relative

to the Earth.

Gyroscopic instruments such as the gyroazimuthhorizon measure and

reproduce by means of follow-up systems (servo loops) all three angles

-, _, z, with the one exception that the angle s is measured from some

• The ship's course has also been differently defined, e.g., as the angle between the north direction of the

line formed by the intersection of the horizontal plane and the ship's plane of symmetry. It is easily seen

that this last angle coincides with the angle between the north direction and the _-axis fixed to the inner

ring of the second gimbal system (the pivots of whose outer ring are perpendicular to the ship's plane of

symmetry), and therefore differs from the come definition given in the text by the value of the gimbal

error "_.

10



gyro-determined direction in the horizontal plane, and not from the north-

south line. Instruments such as the gyrovertical, also used in practice,

only measure and reproduce the angles gand _.

The gimbal assemblies of instruments such as the gyroazimuthhorizon

(without gyroazimuth) and the gyrovertical represent in many cases a com-

bination of two simple gimbal systems: the ordinary gimbal system, with

the outer ring directed, as a rule, parallel to the ship's longitudinal axis,

and a gimbal system of different design (Figure 7), in which a carriage K

slides along a bow B, and rod C, rigidly connected with the inner ring of the

basic gimbal system, is inserted into the bearing P of the carriage. The

bow B, whose pivots are perpendicular to the pivots of the basic gimbal sys-

tem's outer ring, replaces the outer ring of the second gimbal system, while

the carriage K replaces its inner ring. The need for the bearing P thus be-

comes clear, since during the ship's rolling the carriage K and the basic

gimbal system's ring will rotate relative to each other through an angle equal

to the gimbal error.

\

/

Y

I TI,

FIGURE 6 FIGURE 7

Similar gimbal systems* are met, in various design variants, in most

control instruments (gyroverticals. coordinate transformers, etc.); they

are called bicardan suspensions.

The bow pivot axis (Figure 7) will be denoted by x, and the pivot axis

of the outer gimba] ring of the basic system by y. The coordinate system

•"yl is therefore fixed to the instrument housing. The pivot axis of the inner

gimbal ring of the basic system will be denoted by }, and the axis perpen-

dicular to it and lying in the plane of the inner ring by _. The coordinate

system |_]_is thus fixed to the inner gimbal ring of the basic system. The

position of the bow and the outer gimbal ring at which the planes }_] and x v

coincide will be called the initial position. The counterclockwise tilting of

the bow (when observed from the positive direction of the x-axis) will be de-

fined as positive and denoted by _. The counterclockwise tilting of the outer

gimbal ring (when observed from the positive direction of the y-axis) will be

defined as positive and denoted by _.

If the bicardan suspension housing is so disposed that the xyplane is par-

allel to the deck plane and the y-axis parallel to the ship's longitudinal axis,

it follows that if the }_] plane is stabilized in the horizontal plane the angle a

• Some other types of girnbal systems will be described in § 4 of this chapter.
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represents the ship's pitch angle, and the angle _ the ship's roll angle, in

the sense in which these angles were defined above (pp. 5 and 6).

In this case the _-axis represents the ship's course line; the angle x be-

tween the _]-axis and the north-south line is by definition the ship's course

(cf. p.lO).

If for a-_------0, the ship's direction points north, then x = 0; if it points

east, then x=90 ° .
It follows from the above that the direction cosines of the system E_,

fixed to the inner gimbal ring, relative to the system zyz fixed to the hous-

ing are given inTable (13), which gives the direction cosines of the system

Es_l fixed to the inner gimbal ring relative to the system zyz fixed to the
ship (in that case the y-axis is the pivot axis of the outer gimbal ring --

cf. Figure 1).

Since this table is of great importance for many subsequent studies, it

is repeated here:

s ¥ t

cosp 0 --,in p

•"tsin • co6 pslap -_ cos,,t "R'I Sin _COSS p (18)
i 1 . l

¢ _-coszsinp ---_smzcosp -_-cos _co, p

Another table which will be helpful later on is

z y z

cosp 0 -,in p
sin _' sin p cos _ sin _' cos p (I 9 )

cos a' sin _ --sin a' cos _'cos

In this table, which is in fact Table (3), ='denotes the tilting of the inner

gimbal ring of the bicardan suspension relative to the outer ring (Figure 7);

it is considered as positive if the inner ring is tilted counterclockwise when

observed from the positive direction of the E-axis.

Note that the orientation of the outer gimbal-ring pivot axis (whether

parallel to the ship's longitudinal axis or perpendicular to its plane of sym-

metry), is unimportant for a gyrovertical without gyroazimuth. In fact,

and _, the angles of tilting of the bow and of the outer ring are symmetrical
in the expressions given in Table (18) for the direction cosines of the C-axis

relative to the z, y, s system.

Accordingly, if any instrument is stabilized in the horizontal plane by

means of a synchronous link with a gyrovertical and is suspended in a

bicardan suspension similar to that of the gyrovertical, then the mutual

disposition of the bows of these suspensions, whether parallel or perpen-

dicular to each other, is immaterial.

§ 2. Relative rotation of two stabilized systems

during ship's rolling

It was shown in the preceding section that if two gimbal systems are

mounted on a rolling ship in such a way that the pivots of their outer rings

12



. are parallel to the deck and perpendicular to each other, while the planes

of the inner rings are stabilized in the horizontal plane, then during the

ship's rolling the inner rings will rotate relative to each other through an

angle determined exactly by (15) and approximately by (16).

This section deals with the more general case when the pivots of the

outer rings form an arbitrary angle _; the problem is solved with an accu-

racy sufficient for technical needs.

It will be assumed that two bicardan suspensions of the type shown in

Figure 7 are mounted on the ship. The pivots of their outer gimbal rings

and of the bows are parallel to the deck, their direction in the deck plane

being arbitrary (it is of course also possible to dispose them parallel to

any other plane fixed in the ship, such as the plane of the ship's frames).

We denote (in accordance with Figure 7) by z,, _,, z, the axes of the co-

ordinate system fixed to the housing of the first bicardan suspension, by

zl, Ys, zl the axes of the coordinate system fixed to the housing of the second

bicardan suspension (z,,i denotes the bow pivot axis, Yl,* the outer gimbal-ring

pivot axis ), and by },,I],,_ the axes of the coordinate system fixed to the inner

gimbal ring of the first bicardan suspension; the axes _l, _],,_I coincide re-

spectively with the axes zl, if,,s, when the plane of the inner riag is parallel

to the deck plane (or, which is the same, to the zly I plane).

We denote by -, and _, the angles of tilting of the first bicardan suspen-

sion bow and outer gimbal ring from their mid-positions. The bow plane

passes in its mid-position through the z,-axis, while the plane of the outer

ring is in its mid-position perpendicular to this axis. i.e., it passes through

the zl-axis. The angle _ will be taken as positive when the bow is tilted

counterclockwise when observed from the positive direction of the z_-axis;

the angle _z will be taken as positive when the outer ring is tilted counter-

clockwise when observed from the positive direction of the yl-axis.

The direction cosines of the system },_],_1relative to the system z,y,$,

can be found from Table (18) by suitably changing the notation:

where

i t i .

i i i ¢_ a,cos_,

It,= _/i--,in',,,in'_,.

(20)

An analogous notation will be used for the second bicardan suspension:

_rty_. I for the coordinate system fixed to its housing, _s_]l_ for the coordinate

system fixed to its inner gimbal ring, and "l and _z for the angles of tilting

of its bow and outer gimbal ring. The following table is then obtained by

analogy with (20) for the direction cosines of the system |l_ relative to

(21)

the system z_iz_:

z, y, s,

! sin_c_s_ssin_, l ! .

1 t sin%cos_ 1¢, _- _os,,sin_, -- a-%" _ co,_,¢o,_,

13



where

The :sYa and z,_s planes are parallel in accordance with the above, and
the angle between the axes z a and z s (or, which is the same, between the axes

Y, and Ys) is equal to some given value ? (Figure 8). The direction cosines

of the system :ttVs_ relative to the system :ta//tt a are therefore:

=a Ys zs

zs cos? sin ? 0
Yt _81n ? 008 ? 0 (2 2 )

0 0 1

According to the conditions of the problem the planes of the inner gimbal

rings of the two suspensions are also parallel. We denote by X the unknown

angle between the axes |z and }s (Figure 9).

FIGURE8 FIGURE 9

The direction cosines of the system |zva_ relative to the system },_l,_

are analogous to those given in (22):

% 'I,

}s cosZ sin X 0
_, --Mn X cos X 0

C, 0 0 t

(23)

Obviously, if _--_,=0, then X.--T and at'--_,'--0, since in this case the

coordinate system =ayaza and _x_h_, and also x2//_ and }s-qsCs, are respectively

parallel.

If the angles as and _s are different from zero, the angle Z will not be

equal to ?, and their difference, T=_--% will represent the magnitude of

the rotation of the inner gimbal ring of the second suspension relative to

its housing.

An analytical expression has now to be found for T as a function of the

angles a,, _1, _" Such an expression can then if required be easily transformed

into a function of the angles as, @s" _, since the angles at,and _t can be defined as

functions of the variables as, _s, and _.

In order to solve this problem, the direction cosines of the system xt/hzl

relative to the system }1_]i_Iwill be determined in two different ways, based

respectively on Tables (20) and (22), and (21) and (23).

The first gives

cos y,% = cosysz, cos%z, Jr cosy=y,cos_y, + cosy_ cos%_--
t i

"- --'_s sin at cos p, sin Ila sin ? nt- "_t cos at cos ?,

14



• the second

cosy=_,-- cosy=_.cos_,_=Jr cosy=_, cos_,_=-}- cosV=¢=cos_hr.==
t

--_ _-_-=cos==co_X.

The required direction cosines are obtained in the following two forms:

and

!
=s cosJ_cos_ -_=.in=lcoshsinhcos_+ -_cos==.ia_co=_-

t !
+-_-1 cos==s'V --_= .in ==c= pzstn

i . l
y= "-cosPlsin? --_1 sm al cosp=sin[31sin? -t- -- "_'s cos=l sin p=sin? --

l i
-F _'_'s c°s =1 c°s _ a= sin ==cosp=¢_sV

l t
== --'_h _--_sin==cos2p= "_scos==cosPt

_s _s Cs

i
:= cos p=cos _c-- cos _=sin Z -!- "_-s cos ==sin I_

t stnatcospssin_sinZ -F_-_=stnascosps.inpscm_Rs

t t
VS --'_S COSassln X ._s COSas cos ]_ -- "_-=sin a= CO_

(24)

(25)

$| --.inl_cos X-- --sin_=dnx -F

i t !
i =lnasco_sin _ -F _-s sin ,,s cos _cos z -_=cosazo_p==qs

where

ttl=_/t_sinta_sinS_ and Rz=_/t_sinS==sin=_=.

The following three equations are obtained by equating the expressions

for the direction cosines of the _-axis relative to the system zt ut_in (24)

and (25) :

t ==sin p=;
_'-_'1cos ax sin _s cos ?-- Rs'st sin a xcos p= sin ? = _ cos

i cosa z sin_zsin t . i? ---_-1 sin =z COs_z cos ? =-- -_= sin ==cos_z; (26)Rz

i i
cos=,co_p_= _ ==cos

Each of these equalities follows from the other two.

Assume that the angles a_ and _s (and therefore also the angles as and _

are first-order infinitesimals, and neglect all terms of higher order than

the second; it then follows that the radicals Rs and R_ can be replaced by

unity, since they d_ffer from it only by fourth-order infinitesimals.

15



Thefirst twoequationsof (26)cannowbereplacedbythefollowingap-
proximateformulas:

p,--.-.-a_ sl- ?-l- p_e_ ?;
(27)

_-- _ e_s ? -{-_ sin ?,

which will be accurate up to and including second-order infinitesimals.

The following equation is obtained by equating the cosines of the angle

between the axes Ys and }z in Tables (24) and (25).-

cos _1 isin ? --" -- _ e_s o_ sin X. (28)

The ratio of the cosines in this expression can be expanded in series and

equals, in a second-order approximation.

| t
_,p,=i--TP_ _! I _,_i .

Using this expression, formula (28) reduces to the approximate equation:

sinl_( t_t_ TI saz,) sin (29),+ ?.

It is seen from (29) that the angle X differs from the angle ? by second-

order infinitesimals only. Since T'--X--?, the following approximate ex-

pression can be written:

sin X----_ sin (?-J-T)--sin ? -]"T cos ?. (30)

This expression is accurate up to second-order terms in gl, Pi, as, and Ps"
The following relationship is obtained by equating (29) and (30):

-_cos ? -- "3"L_-._ sin ?.

Inserting the second of equations (27) gives, after obvious simplifications.

-- 4 _ i r_ sin2_ _ glPlsins?" (31)

This last formula gives the solution to our problem.

For instance, let -z =-7 ° , _z = 15 ° , ?=45 ° . Then

l
T =--_(0-262'-- 0.t22') -- 0.262.0.122 • T-_ -- 0.0294.

This is a setting of the suspensions which was once popular.

For ?--- _, i.e., when the axes of the outer gimbal rings of the two

bicardan suspensions form a right angle, (31) reduces to

This formula coincides, as was to be expected, with the gimbal-error

formula (16).
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§ 3. Stabilization errors caused by inaccurate

mounting of the gimbal systems

(geometry of two bicardan suspensions)

The combined working of several stabilized devices on the same ship

can be accompanied by errors due to additional rotations of the stabilized

elements. Such rotations are caused by the absence of strict parallelism

between the principal axes of the gimbal systems, by nonidentical kinematics

of the gimbal systems, and by inaccurate stabilization in the horizontal plane.

The influence on the combined working of two bicardan suspensions of

nonparallelism between the pivot axes of the outer gimbal rings or of the

bows, will be examined in this section. The influence of the other factors

mentioned above (nonidentical kinematics of the suspensions and inaccurate

stabilization in the horizontal plane) will be treated in §§ 4 and 5 of this

chapter.

Let two bicardan suspensions be mounted on the ship (Figure 7), and

let their inner gimbal rings be accurately stabilized in the horizontal plane.

Due to inaccuracies in the mounting of the suspensions housings, the pivot

axes of their respective outer gimbal rings and bows will form small angles

(since the housing of one suspension is rotated through a small angle in

relation to the housing of the other suspension).

We will use the same notation as in the preceding section. The co-

ordinate systems xzyzzz and }zlh_,will be considered as fixed to the housing

and to the inner gimbal ring of the first bicardan suspension respectively,

while the systems x_//_,_and }2_ will be fixed to the housing and the inner

gimbal ring of the second suspension respectively. The letters _ and _l

will respectively denote the angles of tilting of the outer gimbal ring and

of the bow of the first suspension, the letters =s and _zthe corresponding

angles for the second suspension. The angles =z and _'z, and likewise the

angles _l and _., are not equal because of the nonparallelism of the axes

of the coordinate systems xzyzzz and x_ z (due to the inaccurate mounting of

the suspensions housings).

FIGURE 10

The angles x z and _, formed respectively by the axes llz and 11z with the

north-south line (or with any other fixed direction in the horizontal plane),

are likewise not equal (Figure 10). In particular, the difference

"r _-.._-x_ -- x=, (321

representing the angle between the axes _]zand _]=(or between the axes }z

and }z), is not zero.
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Let ao, _0, TO be the values of the angles _, _s, _ for a,_--_,_--_0 (i.e.,

when the _gl plane coincides with the horizontal plane, or which is the

same, with the El_]l and }sTh planes). We denote by a_, _, *_ the values ob-

tained by subtracting respectively a°, _, _ from _'z, _2' xt"

If al, _1, lh denote respectively the pitch angle, the roll angle, and the

ship's course, then a_, _, x2*denote the same angles as measured on the
second bicardan suspension after the so-called coordination of the latter's

scales with those of the first suspension.

If the pitch and roll angles, aland _1, differ from zero, the angles

as*, _s*' x_ will differ from the angles ha, _1' x, by the small magnitude Am, A_,

-Ft'= x,-FA: -FT'.
The stabilization errors Aa, _B, A._ become zero when az_s_O independ-

ently of the value of _0, _0, -_; they also become zero when _0__--_=-_=0
independently of the value ofa I and _l (this corresponds to the case when

the axes of the coordinate systems x,gl"- l and x2y _ fixed to the housings

of the bicardan suspensions are perfectly in parallel}.
It follows that the first nonzero terms in the expansions of Aa, A_, AT

in series as functions of the variables _h, _1, a°, _, _ must contain products of

°
\I

FIGURE 11

the variables aland _lbYz °, j_, and To (in
other words, the expansions contain no free

terms). If the angles a xand _llie within the

usual limits (much smaller than 90°),

Aa, A_, andA T, can be considered as of

the same order of magnitude as a °, _,
or less.

The squares and products of the angles

a°, _0, 1_, and also of Aa, A_, AT, will ac-

cordingly be neglected in comparison with

first-order magnitudes. The expressions

containing the angles'_ and _ will be ex-

panded up to and including second-order terms (squares and products

of a I and _,).

We must now obtain analytical expressions for the errors Aa, A_, Ax as

functions of the pitch and roll angles al, _1, and the coordination-error

angles z 0, _0 .f0, in order to form an idea on the accuracy with which the
housing of one of the instruments must be mounted in relation to the other.

We now introduce a new coordinate system x°y°_ fixed to the second bi-

cardan-suspension housing and directed so that its axes coincide respec-

tively with those of the coordinate system }t_h_, fixed to the inner gimbal

ring, if the outer gimbal ring is tilted through an angle _ and the hoop through

an angle _ from their mid-positions.

When a1= _l = 0 (Figure 11), the axes of the coordinate system }s_is_ co-

incide with those of the coordinate system _.gl"-l, and the axes of the co-

ordinate system |t_ coincide with those of the coordinate system x°y°_ (in

accordance with the definition of the latter). The }s_is and }s_lt planes are

both horizontal and thus parallel; it follows that the _:_//s and _ planes are

also parallel. The angle between the |a- and }t-axes is equal to _ for _--

--_---0; it follows that the angle between the_- and _-axes is likewise
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equal to "_ (Figure II). The direction cosines of the system _ relative

to the system zsylZt are therefore:

z_ y, r_

cos_ sin_' 0
--sin'l _ cos 1_ 0

zs 0 0 t
(34)

In view of the smallness of the angle "_, (34) can also be written in the

form : Zl Yl #1

t # o
I_ --'re 1 0 (35)

zo 0 0 t

in which terms of higher order than the first have been neglected in the

expansions of cos _ and sin _.

The direction cosines of the system }l_ relative to the system _]Yz_

are identical with those in Table (20) of the preceding section:

where

zx y_ zA

_ cos i_ 0 --sin l_

i sin_cosptsin_ -_-_cos_, sln_e, os'_n'--[
!

¢' a'-_'lcos_sinp, -- s-Tlsin_cos[_ _-coszsem_

R,---- _/t -- sin2_ stn2l_.

The direction cosines of the system z°y°_ s relative to the system |1_1

are obtained from (20) and (35):

i
t sin_ cospxsin p,_ _ cos_, sinp,--

o I o i
-]-'I_ cos as --T_ sin s_cos p_

--_*cosp_ ---__ sinz_cosp_sinps_ --'__ cos_s_-ps-

i i sln s_c,os _s

--sin [_, f isin a, COS'Ps _ COS_ COS

(36)

We find now the direction cosines of the system z°/_ relative to the

system x_,g_. From Table (21) of the preceding section:

zs y_

_s cos p_ 0 --sin

1 i 1 sin az cosS_ z
_s _ sin as cos _s sin _ _ cos % R--s-

t t cos a: cos __s ._;- cos _ sin [_s -- _ sin as cos _
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where
Bs_ _/i -- sin2 as sint_t.

Since the coordinate systems x°V°z° and }j_lz_ coincide when as=a° and _2-_ °,
the direction cosines of the system x°y°z° relative to the system xz//_ are

obtained from Table (21) by replacing a_ and _s by ae and B° respectively:

where

=, yt st

x ° cos _ 0 --sin

yO _ sin ao cos_Osin_O _-_ cos a sinsO cost_ o

i o
z° R'_s_°sin_ .° ao! sina°cos_ ° _-cosa cos_

(37)

B°= _/t -- sinSa° sint_ °.

The angles a° and _o are assumed to be small, and their squares and

products are therefore negligible compared to unity. Table (37) can there-
fore be written as:

zt Yt

_o _ o --_
f 0 t _o (38)

The direction cosines of the system x°y°z ° relative to the system }t_
are obtained from (21) and (38):

zo cos_ +psin_
I

sin a2 cos _z sin _ --

t
-- _°'_t sin at cost _

i t

"_l cos ai + aO_-_-tsin a2 cost _t
!1o --.o sin Pt

!

P _'_-ssin as cos[_ sin _ --

t

-_0_'s eosas+
l

+ _'s coetX sinq

1
_'s cos as sin _ --

t
- p_-cos_ospl

t
-- _'s sin_ cosl3t4-

t
+_o_'s cos_ cosPt

I
p-_;-c_s _ sin pt+

l

+'°'_t sin _ cot _ +

!
+'_t __

(39)

Tables (36) and (39) are important for the subsequent calculations.

Since the axes _a and _are parallel, their direction cosines relative

to the system x°y°_ ° must be equal. The following three equalities are

therefore obtained from Tables (36) and (39):

_ cos, sin _-- T° RJ-_ sin a. cos _ "--

! o t
=_-_-COS a_ sin Pt--_ _"_ COSC_Cosl_; (40)
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I sin g: cm _----_--7* Rfl-_cos a z sin Pz --

=-- RA_sin *_co6p_+.° RA_co8'_ co6P_

(40)

Ri
t

+,,, _ s,,,,,,co_p,+ _-_ co8h co,p_
Each of these equations follows from the other two with an accuracy up to

first-order terms in a*, _, and _.

Using (40), the angles aj and _ can be found if _, _, _, _, and _ are

given. This solves the problem of determining the errors in the stabiliza-
tion of the inner gimbal ring of the second bicardan suspension in the hori-

zontal plane, since _ and A_can be obtained from (33) for known band _.

In order to obtain formulas for the direct determination of _ and _, we

expand the trigonometric functions of a t and _ in series. Using (33}, the

following expressions are obtained as a first-order approximation:

and

co8,,=co8_--(_+ _) si-_.

(41)

i t i

!

+ (,*+ as)A_ _i- si°2a,._-_p_+

(42)

or

RS-- RI --" -- R_I

-}-_8'-}- _8) sin'ax_ sin_ . (43)

The substitution of (41) and (43) into the first two equations of (40)

yields

I cos_sin_z--7 e i 1_--;- _ sin., _, _=_- _o,,I_.J_+

(nO+ An)CoSa I sina I sin*_ 1+ (P+A_)sin _ al _0_ _l! sin _ _08g 1 SjD pl_-
+

1 1

(44)
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t i !
--I* _ col aAsin p_-- _ sin ,, cos J_---- _ sin a_cos pa--

(ao+aa) c_ ._ sin., sin' h+(_+Af3) sin, -, oo, p_sin p| sin a, cos _

These equations are of the same order of accuracy as (41) and (43).

They can be simplified to

(ao + A_) ¢_, _, sin h ÷ (_o _}. A_) sin _, c_ J_
i--sins.,sins[_ e,os o4 sin _ sinai --

(45)

(_o + A*) cos *a sin _ -I- (p Jr AJ])sin al roe [_ sint _1 cos _1 sin Pa --
= -- i --sint _ sins J_

--_ toe _co_ __j_ (_o___ &_)sin _ sin _.

We now expand the trigonometric functions of _1 and _1 appearing in (45)

into power series and neglect all terms of higher order than the second.

}_quations (45) then become

-- ._.,t, -- _ p,),
(46)

i t i= -"" 0 - ",- r + (v,+ ,,p),,.,p,.

These can be simplified stillfurther by taking into account the fact already

mentioned (cf. p.18) that the expansions of _ and _ in power series of 0_

and _tcontain no free terms, and by neglecting the products of _ and _ as

second-order terms in _I and _I. The following final formulas result:

_ =__% + _o_,
(47)

_= _'p,÷ p*_,.

Formulas (47) give the value of the errors in the stabilization of the inner

gimbal ring of the second suspension in the horizontal plane during the

ship's rolling. It is seen that these errors depend mainly on _0 i.e., the

rotation about the tin-axis during mounting of the second bicardan suspen-

sion relative to the first.

Assume for instance

_0=p0=_°=0.008(m0.5°); _,=0.i22(7°); []_=0.262(15°_
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Then:

a=-- _P,+P'_I-- 0.002t+0.0003 O'+t'),

O---_% + ='=@, = -- 0.0ot0 + o.0oos (--_ + t3.

The value of AT, giving the azimuth error in the stabilization of the inner

gimbal ring of the second suspension, will now be calculated. It is seen from

Figure 10 that

COS |z_t = sin (le-_ - aT) =_ 1a-_ a T. (48)

On the other hand it follows from (36) and (39) (which give the direction

cosines of the system aJ_ relative to the systems El_,_l and _s_h_ respec-
tively) that:

(_T sina,cos.p=s= '' all(cos: l_+z _,_os I_+PsinP,) +

Expanding the right-hand side of (49) in power series, neglecting all

terms of higher order than the first in =0 _, and _, and equating it to the

right-hand side of (48), we obtain

0 l
_*+aT=-J-/sl_ =,_ p,s., PI_ P,+T _- _os=1_ P,+

l o !
+ p*_- sin =ico6p_sin p=sin p,-- = _ cos =_sinp=-l-

.j__._.tt sin ==eos=_¢_s p= t.__.sin at coati31 sin_.nt (50)

Inserting (41), and neglecting all terms of higher order than the first

in a °and _, yields

t .
/e .3L AT ._. _ [sm =h cop l_=sin [3=-- OP + ap) sin =: cos [_ sin' [3=-_-

-_- 1Ocos=l Cos _z-J-_ sin =1 Cos _1 sinful-- a° cos =1 sin _-_-

-Jr-[P sin =x cos= pl -- sin _ cos= _ sin [_--

-- (_ Jr ap) sin =1 cos= Px], (51 )

which can be simplified to

i o p=-- apsin=,em_ --aT==__/oq__ [I cos=1cos

-- =°cosaxsinp,]. (52)

Formula (52), which determines AT, can be considerably simplified by

neglecting all terms of higher order than the second in gh and _:

AT ._ __]e _ __ a_ t __ A[k_. (5 3 )
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Inserting the expression for A_ from (47), and neglecting terms of higher •

order, lead to the following final formula:

This formula gives the azimuth error in the stabilization of the inner

gimbal ring of the second suspension during the ship's rolling. It is seen

that this error depends mainly on@, i.e., on the inclination of the housing

of the second suspension (i.e., of the zt-axis) referred to the plane zz_.

Assume as above _°--_--_0.008 (--N0.5°), _i_0.122(7°), [31-_-0-262(15°) ,

then

AT-----_% + _ _ ------0.0021 -- 0.0002 (--_' -- 19.

The stabilization errors of the roll and pitch angles and of the course

mounting of the [second] bicardan suspension housing are therefore, ac-

cording to (47) and (54),

A,.-- _,+ p',_;

AT------_i+_* --T--"

It is seen from this that the influence on the stabilization accuracy of

the inclination of the second suspension housing (i.e., of the z-axis), re-

ferred to the ship's plane of symmetry (the angle _ is negligible.

§ 4. Horizontal stabilization errors of combinations

of different types of gimbal systems

If two kinematically different gimbal systems are mounted on the ship
and their inner rings are stabilized in the horizontal plane, the values of

the roll and pitch angles indicated on the scales of the two gimbal systems

can differ, due to the difference in the geometric determination of these

angles.
In a bicardan suspension, for instance (Figure 7), the tilting angle n of

the bow is taken as the pitch angle, and the tilting angle _ of the outer gim-

bal ring as the roll angle.
In the initial position, the plane of the outer gimbal ring is parallel to

the z v plane, while the bow plane is perpendicular to it (z = bow pivot axis,

//= outer gimbal-ring pivot axis; the z// plane is parallel to the deck plane,

the //-axis being parallel to the shipVs longitudinal axis).

In the simplest gimbal system on the other hand (Figure I), the tilting

angle _ of the inner ring relative to the outer ring is taken as the pitch

angle, and the tilting angle _ of the outer ring relative to the deck plane is

taken as the roll angle (the outer ring pivot axis //is parallel to the ship's

longitudinal axis).

It is therefore seen that, while the roll angle is identically defined in the

two cases, different definitions are used for the pitch angle. In the first

case, the pitch angle _ is the bihedral angle between the bow plane _ (the

vertical plane containing the x-axis)and the plane xz perpendicular to the
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• ship's longitudinal axis (the z-axis is parallel to the ship's mast; the zz

plane is parallel to the transversal plane or plane of the ship's frames}.

In the second case, the pitch angle a t is the bihedral angle between the ver-

tical plane passing through the inner gimbal-ring pivot axis _ and the same

xz plane perpendicular to the ship's longitudinal axis (this plane contains

also the }l-axis).

The angles = and ='are equal only for roll angle _= 0, i.e., when the inner

ring pivot axis E1 of the simplest gimbal system is parallel to the deck plane

(and therefore to the bow pivot axis _r). For roll angles differing from zero,

the difference between the pitch angles = and aS indicated by the bicardan

suspension and the simplest gimbal system respectively can be consider-

able.

The difference between the two angles can be calculated in the given case
from formula (8):

tga'= tg =cos_0

which was derived in § 1 and which links the tilting angle a' of the inner

gimbal ring relative to the outer ring to the tilting angle = of the bow plane

and the tilting angle _ of the outer gimbal ring cf the bicardan suspension
relative to the deck.

This formula can be approximated by the formula {accurate up to third-

order terms in = and _):

mS

tg-'-_-= ---_ _- -'4J-- (56)

On the other hand, tg_ can be expanded in the series:

a _

tg ='-- _' -]--_---_-....

It follows that the angle =fdiffers from the angle _ by third-order terms

in = and _. It is easily seen that, with the same accuracy:

=' =--T " (57)

It follows that if the inner gimbal ring of the bicardan suspension is

perfectly stabilized in the horizontal plane, and if the pitch and roll angles

and _ indicated by this suspension are accurately reproduced by means of

follow-up systems as pitch and roll angles 0_and _ on the simplest gimbal

system, the inner ring of the latter will not be horizontal. According to

(57) the so-called stabilization error will be equal to

This formula gives the amount by which the angle aSmust be increased (or

decreased, if A-'<0) SO that the inner ring of the simplest gimbal system
is horizontal.

For == 0.322 (7°) and _= 0.262 (15°), this formula gives

= -- -_ = -- o.oo42(t4.s'),&='

which is a relatively large error.

The difference between the pitch or roll angles indicated by kinematically

different gimbal systems having perfectly horizontal inner gimbal rings
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obviouslygivesthemeasureof thehorizontal-stabilizationerror for the
combinationof thesegimbalsystems. It is of courseassumedthatthe
gimbalsystemhousingshavebeenmountedsoaccuratelythatthestabiliza-
tionerrors dealtwith in §3canbeneglected.

Twotypesof gimbalsystemshavebeenexaminedsofar: thebicardan
suspensionandthesimplestgimbalsystem. Somegimbalsystemsde-
signedaccordingto otherkinematicschemeswill nowbeconsidered
(Figures12--14).

Thefirst of thesegimbalsystems(Figure12)hasbeenusedin many
instrumentsanddevices,in particularfor thehorizontalstabilizationof
the gyrocompassfollow-upsphere. Thisgimbalsystemwill bedenoted
byA.

Y

C¥

pA !

_Z

FIGURE 12 FIGURE 13

Another gimbal system, encountered in two different design variants in

some instruments, is shown in Figures 13 and 14. It will be denoted by G.

The bicardan suspension (Figure 7), which is the type of gimbal system

most frequently used in instruments and devices, will be denoted by B;

lastly, the simplest gimbal system (Figure 1) will be denoted by E. The

gimbal system E is remarkable in that the pitch and roll angles indicated

by it form, together with the angle [of rotation about the _-axis] measured

in the plane of the inner gimbal ring, a set of Euler angles.
In this section we determine the-horizontal stabilization error for the

combination of any two of the above gimbal systems, B, E, A, and G.

We consider the gimbal system B as basic, and find the relationships

between the pitch and roll angles a and _ indicated by this gimbal system,

and by the gimbal systems A and G. The corresponding relationships for

the gimbal system E have already been found and are expressed by formu-

las (8) and (57).

Consider first the gimbal system A(Figure 12). The pitch and roll

angles are taken as the ratios of the displacements u and v of the slides

Kland Ksto the length I of the rod rigidly connected to the inner gimbal

ring.

The rod ends in the sphere $, which slides freely inside the hollow

cylinder CY, connected rigidly to the upper slide.
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Theupperslidemovesthedistancev in the direction of the ship's longi-

tudinal axis relative to the lower slide; the lower slide moves the distance

u in the transverse direction, parallel to the deck (the inverse position

of the slides is also possible). The outer gimbal ring is parallel to the

ship's longitudinal axis. For u=v=0 the plane of the inner ring is paral-

lel to the deck plane. The ratios

@ u
_=--T' _-----T

represent in the gimbal system A the ship's pitch and roll angles.

/

FIGURE 14 FIGURE 15

B U

It is easily seen (Figure 15) that the ratios i-and _-represent the cosines

of the angles which the rod makes with the axes x and y (the x-axis is per-

pendicular to the ship's plane of symmetry, the y-axis is parallel to the

ship's longitudinal axis). Since the rod is oriented perpendicular to the

plane of the inner ring, which is assumed to be stabilized in the horizontal

plane, atand _ should be equated respectively to the cosines of the angles

formed by the C-axis of the bicardan suspension Bwith the same axes. The

following relationships are obtained from (18):

I
_[=-_ sin • cos _,

(58)
= ¢o,•sin

where

R = _/i-- sinz• sins[3.

We expand the right-hand sides of (58) in power series in n and _, and neg-

lect all terms in these variables of higher order than the third. The fol-

lowing approximations are thus obtained:

(59)
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It followsthatthehorizontal-stabilizationerrors for thecombination
of thegimbalsystems ,4 and B are expressed by the formulas

(60)

We consider now the gimbal system G (Figure 13 or 14). The roll angle

is determined here, in the same way as in the bicardan suspension B, as

the angle of tilting of the outer ring relative to the ship's deck (about the

y-axis, parallel to the ship's longitudinal axis).

The pitch angle, which will be denoted by _*, is de-

& fined here as the angle of tilting of the bow P about/
z__,e ] _ the x-axis which is perpendicular to the ship's plane

> of symmetry (Figure 13).
_/ The bow P moves the arc A, connected to it by

the bearing B; the axis of the bearing B, which will

be denoted by z*, is perpendicular to the z-axis and

lies in the same plane.

The arc A moves in its turn the inner gimbal

ring, to which it is connected by means of two

¢ hinges H.

The hinges H lie in the plane of the inner gim-

bal ring on the ship's course line (the _-axis),

FIGURE 16 i.e., on the line perpendicular to the axis of tilting

of the inner ring relative to the outer ring.

The axis of the bearing B (the z*-axis) is perpendicular to the ship's

course line (the _]-axis). According to (18), the direction cosines of the

_-axis relative to the coordinate system _z are respectively

I
cos _x-_-_- sin • cos p sin p,

t
©os'_ _ _ co6 a, (61)

1
cos _ = W sin • cos' p.

On the other hand the z*-axis forms an angle _*with the z-axis and lies
in the Srz plane (Figure 16). The direction cosines of the s*-axis relative

to the zyz system are therefore:

COS _*Z _. O,

cos Z*y -- --Sin m*, (62)

COS ZeZ_--- COS_. e.

The condition of orthogonality of the two axes I]and z* is defined in analyti-

cal geometry in the following way:

cos _,z cos z*x _ cos _y cos z*y -]- cos _z cos z*z = O.

Inserting the corresponding cosines from (61) and (62) we obtain

t l
_-cosa sin a* --_--_ sin Q cosl_ cos a* ---- O, (63)
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• .whence

tga*--tSa¢_'g (64)

The last formula is the required relationship between the pitch angle g*

indicated by the gimbal system G and the pitch and roll angles g and _ in-

dicated by the bicardan suspension B. This formula can be approximated

by the following expression, accurate up to and including third-order terms

in = and _:

--_) ==+T-- =_. (651

The following formula is obtained by following the same procedure as
in the derivation of (57):

whence, with the same accuracy:

=*--=--_. (67)

It is thus seen that, when the gimbal system Gand the bicardan suspen-

sion Bact in conjunction, there is a horizontal stabilization error in the

pitch angle only, and its value is given by

_.=*__---.,*__= --- _=. (68)

The horizontal stabilization errors when the bicardan suspension B acts

in conjunction with any of the gimbal systems E, A, or G can therefore be
tabulated as follows

Gimbal system type B E A G

=p, =p,
Pitch angle error 0 -- -F --'-_'- --_ (69)

Roll aagle error 0 0 m-y-

The horizontal stabilization error for the combination of any two of the

three gimbal systems E, ,4,G is obviously equal to the difference between

the values given in the corresponding columns of this table. The pitch

angle error for the combination of gimbal systems A and E is thus zero
(more exactly, its magnitude is of an order higher than the third in • and _),

while the roll angle error is equal to m -_-. This means that if the pltch and

roll angles of the gimbal system E, whose inner ring is accurately stabilized

in the horizontal plane, are reproduced by means of follow-up systems as

pitch and roll angles in the gimbal system A, then the error m_ should be

added to the pitch angle in order that the inner ring of gimbal system A be

horizontal.

Within the above limits of accuracy, the pitch and roll angles indicated

by any of the gimbal systems B, E, A, and Gcan be assumed to be ,, and _.
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§ 5. Variation of the polar coordinates of a fixed point

caused by horizontal stabilization errors

(analytical treatment)

Consider two gimbal systems the axes of whose outer gimbal rings are

parallel to the ship's longitudinal axis. Let the inner ring of the first gimbal

system be accurately stabilized in the horizontal plane, while the inner ring of

the second gimbal system is stabilized at a certain pitch angle error At,and

a certain roll angle error _.

We denote by • l and _ the polar coordinates of a given point S relative to

the first gimbal system's inner ring, accurately stabilized in the horizontal

FIGURE 17

plane. The coordinate 81 (Figure 17) is
the so-called elevation angle, i.e., the

angle between the line v_ connecting the

center of the gimbal system with the

point S, and the plane of the first gim-

bal system's inner ring (or, in other

words, the angle between the line oI and

its projection gl on the plane of the inner

ring).

The coordinate _l is the so-called

course angle of point 3, i.e., the angle

between the ship's course line _h and the

line gl (or, in other words, the angle be-

tween the ship's course line _h and the

plane containing the point S and the

center of the gimbal system, perpendicular to the plane oftheinner ring).

The ship's course line _1 has already been defined (§ 1, p. 10) as the line

lying in the plane of the inner gimbal ring and parallel to the ship's longi-

tudinal axis at zero pitch angle (i.e., when the planes of the inner and outer

gimbal rings coincide).

The course angle )1is measured clockwise from the course line 1h. For

_1 = 90 °, for instance, the point S is situated on the ship's starboard.

The polar coordinates of the same point S, referred to the inner ring of

the second gimbal system (which is inaccurately stabilized in the horizontal

plane), will be denoted by •2 and _s-

It will be assumed that the point S is situated at such a distance that the

lines connecting this point with the centers of the gimbal systems can be
considered as parallel.

Our aim is to determine, with an accuracy sufficient for practical needs,
the differences

_'-=',--'_, _-_t--_ (70)

for given values of the pitch and roll angles g and _, the horizontal stabiliz-

ation errors _ and A_, and the polar coordinates _ and _z-

The analytical solution of this problem (its geometric solution will be

given in § 6) requires knowledge of the direction cosines of the coordinate

system _llh_ (fixed to the inner ring of the first gimbal system) relative to

the coordinate system }_]2_ (fixed to the inner ring of the second gimbal sys-

tem). It will be assumed that the axes of these systems, and likewise the

axes of the systems _YI_ and $_ fixed to the gimbal system housings,
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are oriented in the same way as in § 2, and that the axes of the systems
ZlUlr_ and _ are respectively parallel.

The direction cosines of the system _x_l_ relative to the system z_l _ are
identical with (20) of § 2:

where

z, V, s,

El cos Pl 0 --sin Pl

t t f sina 1col sps_s _ sin a1 cos Ps sin Ps _ cos z s ,q_-

f I !
_s _ cos ax sin _s _s' sin a s cos _s _-l cos a s cos Ps

Rl= _/t -- sins as sin s Pr

The direction cosines of the system _s_h_s relative to the system z_l/sz _ are
identical with (21) :

zs Ys st

_s ©osPs 0 --sin P,
f i 1

% _ sin as cos J3s sin Ps _-t-tc°szs R, sin ascosSps
! ! f

"_-'szc°s as sin _s ---- sin as c°s _sRs _'-s c°s as cos _s

where

R t= _fi -- sins assins Pt.

Since the angles a s and _s differ from the angles asand _,by the small

errors Aa and A_:

at-----as_Aa,
_--p, ÷Ap. (71)

it follows that the corresponding elements in (20) and (21) differ only slightly.
The following expressions are obtained, accurate up to the first-order terms

in the stabilization errors and up to and including second-order terms in
and _11:

cos Ps= cos _1-- _ sin _1"-- cos 131--Ap. Ps,

(72)
cos as = cos zi _ az • _,

--_- z,) (731

The following formula is obtained in the same way as (43):

1 t # t

-- t -_Aa c°s'h_lna_sinSPl sinSalC°_l_sinPl (74)

This formula is simplified by neglecting third-order terms in _ and _x:

! i

_--s-_ _--7 _ I. (75)
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Thefollowingexpressions are obtained from (72) and (73) with the same"

accuracy:
sin as cos [31sin [3s -_ sin _ cos [31sin [3_-_-

--l-A_(I ---_

and

--'2 l) sln_c°spl_sia_xc°splsinpl"l-A_'pn-bAp'_' (76)

sin % cos' _, = sin a xcos' Pz-_ A_ ( | -- I ,_) cos' _,- 2A_. _ sin _ ___

-- --T',t

cos% sin pz__cos_ sin pl__a _ . _p1_}_Ap(l __ T_li, --'ft _),

sin _ cos p,= sin =1cos p, +A= (I -- Y%---_I , I _)__Ap._, (77)

cos _ cos p,-- cos =i cos p,-- A_. _ -- ap. Pr

Inserting formulas (72)--(77) into (21), we obtain

e.z U2 _z

_s cosh-_. I_ o -_--

sin =l cm plsin Pl + cos=l--A_ • *_ ¢m ,l cc_ Pl-b

+a,.pz+ap
+_ I---

-- 2Ap.._[_ (78)

2+ _ • --_-t_

The axes of the coordinate systems z_z _ and x_lz z are respectively

parallel. The direction cosines of the system _z_h_mrelative to the system
_z'_h_ are therefore obtained from (20) and (78), by using the well-known

formulas of analytical geometry of the type

cos'_ = -l-cos'_ y -{-_'_ z =I,

cosl_ X cos_lx -_-cosl_ y cos_ly -_-Cosl_ z COS_Z =0, (79)

and by neglecting third-order terms in e_ and _x:

Ap(I i

+ Ap.

q

--ap(i -- I '

I
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It will be shown in the next section, how (80) can be derived more simpay

by using the formulas of small rotations of a ri_.d body.

Consider now a unit length of the llne _ which comments the point B _

the center of the first gimbal system (Figure 18). Its projections on the

axes of the |t_ system are

cos ,s sin _l, ©os,acos_, sfne,. (81)

la:o ,_e,_ _t

FIGURE 18

The projections of the same length (or, which is the same, of a unit

length of line vs, paratlel to vl) on the axes of the _ systems ere

given similarly by

cos as sin #s cos Is cos #_, sin %. (82)

These same projections can, however, be found in another way. The

projection of a unit length of the line vIon the Z-axis is the sum of the

projections on this axis of three lengths lying on the axes |l,_n,and _ re-

spectively, representing the projections on these axes of the unit length

of the line vI, i.e.,

cos ,_ sin _s-- cos ,_ sin _i cos |i_

-_ Cos *l COS_s COS_h_" "_-sin Is ros_s_ (83 )
etc.

Using (80), these formulas become

cos e:2 COS _s-- cos sI sin _sA_- _ _- cos Isc_ _I =_

(84)

Since _---_and _s_-_1 for Aa_-A_---0, the expansions of the differences
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in powers of Am and Ap contain no free terms. The terms containing powers "

and products of these differences should therefore be neglected in the calcu-

lations, since only first-order terms in Az and A_ were retained. This yields

cos _ sin _/.--- cos el sin _, -- sin., sin _itm -{- cos ,, cos %b,A_.

cos ,I cos )s = cos 'i cos )x -- sin z s cos _xA* -- cos *i sin _bxA_, (8 5)

sin _ = sln "i -I- cos,sA*.

The following three equations are obtained for As and A_by comparing

(85) and (84) and simplifying:

--sin ,_sin _,A, _ cos ,_ cos _,a_ = ---cOs*, cos _,Ap. =i --

sin*lAp (I _-t ,

--sin e,cos _x As -- cOS,x sin _IA_ _---co6 exsin _ A_. % -_-

-_)-Ap._,]; (86_+,,..,[_(, ,
°o..,_=°..,.,._,_(,- _-_)+

+.o,.,°o,,,[-_,(,-_-_,)+_.._].
Each of these equations follows from the other two. Multiplying the

first by cos_1 and the second by --s|n_1 and adding term by term, yields

',,)+_o,,,A_= _,,_. ,,- s_n,,{_os_,AI3(,---_

+,,._,[_.(,-'_,)-_.._]}, ._,
whence

_=-_p.,,- ,s,,{_,,,_(' --_,,)+''
+,,o,,[_,(,-__,)-.,.._]}. (8_,

The third equation of (86) becomes

-_,,,)-,o,_, -_-,,)-,_
These last two formulas give the required solution. If the terms con-

taining squares and products of the variables _ and Ps are neglected, (88)

and (89) become:

A, ------A_ ©os0/i_ _p sio _,;

At = --tip. _ -- tg e x (Apcos _, -_- _x sin _ba). (90)

Formulas (90) are usually sufficiently accurate.

If, for instance, Aa=Apm-----0.008, ¢_-_30 °, %--60 °,

a, = 0.t22 (7°), p_ = 0.262 (t5°),
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then by (88) and (89):

a.----o.oo_ (_

A__---o.o194 (ioD,
while by (90)

A,----0.0029 (10'),

a$=--0.01_ (to_

It was assumed above that the gimbal systems are mounted with a high
accuracy relative to each other. If this is not so, the horizontal-stabiliza-

tion errors and the azimuth-stabilization errors given by (55) (cf. § 3 of
this chapter) should be taken into account in the derivation of (88) and (89).

$ 6. Geometric determination of the stabilization

errors by the theory of infinitesimal

rotations of a rigid body

"ifXJ"
o -.lt

Some of the problems treated in the preceding sections can be solved

geometrically using the simplest principles of the theory of infinitesimal
rotations of rigid bodies.

Infinitesimal rotations of a rigid body can be represented by vectors

directed along the corresponding axes of rotation. A sequence of in-

finitesimal rotations of a rigid body about axes intersecting in one point

can be replaced by a single rotation, represented by a vector equal to the

geometric sum of the vectors of the given rotations, independently of the

order in which they are carried out.

This can be extended to include small rotations of a rigid body. F i n it e
rotations are in fact noncommutative, but for small rotations the non-

commutativity is of the second order. Consider

two bodies subjected to equal small rotations in

different sequences: in order to bring them into

the same position it is then sufficient to rotate

one of them about a suitably selected axis through

an angle of the second-order referred to the

angles of the small rotations.

Small finite rotations of a rigid body can there-

fore also be represented by vectors, oriented

along the corresponding axes of rotation. Let the

body undergo a rotation whose vector is the geo-

metric sum of the vectors of given small rotations.

The position of the body will then differ by a

small rotation of the second-order from the posi-

tion which it would have occupied had it been sub-

FIGURE19 jected to all these small rotations in an arbitrary

sequence. The same applies to the case when

the vector of the small rotation is separated into components.

Consider as a first example the direction cosines of the coordinate sys-

tem z_V,z 1 relative to the system =_/=r_ obtained by rotating the first system

through a small angle _ about an arbitrary axis (Figure 19). Let ?,, ?v, ?t
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be the components of the vector ? along the axes ¢z, Ys, =! and let OA s, OBi,

OCz be unit lengths on these axes. Let A I, B s, C s be the positions which

points A s, B s, C s occupy as a result of this small rotation. As can easily be

seen from Figure 19, the coordinates of points A 2, B_ C s in the coordinate

system zxys_ are, to a first-order approximation in ?., ?v, ?s,

As( t, ?,, --%);
Bs(--?# , |, ?.}; (91)

c_( ?r---v., i).

For instance, the point A x remains in place as a result of the rotation

through a small angle ?m about the zs-axis; it moves a distance 71 in the

negative direction of the _-axis as a result of the counterclockwise rota-

tion through a small angle ?w about the yx-axis; and it moves a distance ?e

in the positive direction of the [/i-axis as a result of the counterclockwise

rotation through a small angle % about the _-axis.

In accordance with (91) OAt,, OB s, and OC s are unit lengths; thus, to a

second-order approximation:

OA,.--_ViJc_nu_ i. (92)

The coordinates of points A_ B I, and C s can therefore be considered as

the direction cosines of the vectors OA z, OB s, and OC s, i.e., of the axes

[/s, _ relative to the system zs [/1 =l-

fore be

z1 t ?,

[/. --% i

These direction cosines will there-

(93)

i

The Table (80) of the direction cosines of the coordinate system |s_l=_

relative to the coordinate system |x_h_, fixed respectively to the inner gin-

hal rings of two bicardan suspensions, having parallel outer ring and bow

pivot axes, was derived in the preceding section. It was assumed there

that the values _x and _= of the tilting angles of the outer gimbal rings of

these suspensions relative to their suspension housings differ by the small

angle &_, and the values of the tilting angles _ and _ of the bows from their

mid-positions by the small angle Nz.

By the theory of small rotations of a rigid body the position of the co-

ordinate system _s_,_ can be considered to result from two successive

rotations of the system _]1_1, first through the angle A_ about the [/l-axis

and then through the angle As' about the ||-axis (a¢= angle of tilting of the

inner gimbal ring relative to the outer ring).

According to (8) :

_ a' _ t,g as e,o6 [_ , (94)

from which it follows, to a first-order approximation in Aa and A_:

cost=' --'_ _-_= n -'-r "_ _ sln _" (95)

It follows from (10) and (12) that

i
oos ¢d_----_-z co6 ¢1, RI = _/| -- slnt_ lins_. (96)
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Inserting(96)into (95)gives

A= _--- _,, _ cos _l -- A_ cos =, sin =1 sin _t)" (97)

According to (20) the _l-axis, about which the inner ring is tilted through

a small angle A_, has the following direction cosines relative to the system

0, _ cos =1, --_ sin an e_s 1_r

The small rotation A0 can therefore be separated into two rotations:

1) about the _h-axis by the angle

i
Ap_.

2) about the _l-axis by the angle
!

-- AI3_-x sin a x c_ _t"

The other small tilting of the inner ring through an angle _' J.e per-

formed about the _l-axis. The components in the system _, _l, _ 02
resulting tilting of the inner ring are therefore, for small variatiot_ of

the angles "l and _l equal to

-- a=' ----_ (A=cos Px-- A_cos =l sin s1sin Pl),

I

_-sm _cos_.

If the right-hand sides of these equations are expanded in powers q_ the

variables "1 and _ up to and including terms of the second order, _ _:)l|ow-
ing formulas are obtained:

--Tp,)--Ap, .,_p,
l

_, = -Ap. =_.

The direction coszaes of the system _lla_ = relative to the system |slla_ can
now be obtained by altering the symbols in (93) and using (99):

, -.(,-½.,)

,
-t-_P.=A

This same table was obtained in § 5 by purely analytical ¢one_lerations
(cf. Table 80).
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When small rotations are considered, it is important to remember

which of the given kinematically linked bodies undergoes any particular

rotation. Otherwise errors are easily made. Thus, in the case just

considered it would have been possible to consider erroneously that the

small rotation of the inner ring consists of two small rotations: A_ about

the outer ring pivot axis /If, and A_ about the bow pivot axis x I. Using (20),

the following incorrect formulas are then obtained for the components of

the small tilting of the inner ring (instead of the correct ones (98)) :

?t = Aa cos [l,;

!

?_-- Aa _ sin aI cos _, sin _s "_- A_ _ cos gl;

i !

?c = Ag _ cos _ sin _l-- A_ _'_'l sin h cos _.

Actually, it is the bow, and not the inner ring which is tilted about the

_-axis when El varies while z i remains constant; the inner ring pivot axis

of rotation coincides with that of the bow only for _i = 0, similarly, the in-

ner and outer gimbal rings of the bicardan suspension are not tilted about

the same axis when _i varies with _ constant (except when _= 0).

Consider now the problem of the variation of the polar coordinates of

point 8 as a result of inaccurate horizontal stabilization. This problem

was solved analytically in § 5.

FIGURE 20

We mount a sight on the inner gimbal ring of the bicardan suspension,

and aim its optical axis at the far-away point ,._(Figure 20). The angle •

between the optical axis and the plane of the inner ring is the angle of ele-

vation, in accordance with the definitions of § 5; the angle _ between the

sight's bearing axis B, located in the plane of the inner ring and the inner

ring pivot axis }, is the course angle. This angle is equal to the angle be-

tween the projection got the optical axis on the plane of the inner ring, and

the ship's course line (the _]-axis).

We alter by a small magnitude Ag the angle a s of the deviation of the bi-

cardan-suspension bow (not shown in Figure 20) from its mid-position,

and by a small magnitude A_ the angle _x of the deviation of the outer gimbal

ring from its mid-position, thus disturbing the horizontal stabilization of

the inner ring. In order to bring back the optical axis to its original posi-

tion, it is necessary to rotate the sight platform by a certain angle _ about
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,the C-axis (perpendicular to the plane of the inner ring) and, by rotating

the sight about its bearing axis u, to alter the angle of elevation • by _.

The angles As and A_ represent the variation of the polar coordinates • and

of point 8 resulting from the disturbance by the angles _ and _ of the
horizontal stabilization of the inner gimbal ring.

We fix a uvlo reference frame to the sight, and let u be the sight's bear-

ing axis, v, its optical axis, and w, an axis perpendicular to both u and v

and forming together with them a right-handed coordinate system.

Consider now the angular displacement of the sight produced by the

variation of the angles "l, _1, ', and _.

Formulas (99), reduced (for simplicity's sake) to a first-order approxi-

mation in a I and _l become;

_,_ _[_, (I00)

?t= --a,_]_.

The angular displacement of the sight caused by varying only the angles

and _ will obviously equal that of the inner gimbal ring. The u. v, and w

components of this angular displacement are equal (as can be seen from

Figure 21), to

?_ cos ) -- _, sin ¢ -- 4, cos ) -- _ sin )

(?_ sin _ -{- ?_ cos _) cos s -_- ?¢ sin •

= ('_ sin _ --_-_ cos '_) cos • _ _i_ sin., (I01)

(?_sin _ _- ?_ cos _) sin •-_ ?c cos s---
-- (_a sin _ -J- A_ _os _) sin • m "1_ cos _.

A small variation of the angle _ causes a rotation of the sight about the

axis of its platform, Le., about the C-axis; a small variation of the angle •

causes a rotation of the sight about its bearing axis, i.e., about the u-axis.

/
w

FIGURE 21

The u, v, w components of the angular displacement of the sight caused by

the variation of the angles • and _ will therefore be (taking into account that

A_<_0 for a counterclockwise rotation, as viewed from the positive C direc-
tion) :

A•, _A_sJna, ---A_CO_s. (102)
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Thevectorof theresultantangulardisplacementof thesightcausedby .

the variation of all the angles (_, _, ,, t), will equal the geometric sum
of the vectors of the separate rotations. The a, u, and u, components of this

resultant rotation are:

?. _ _,, cos _ -- A_ sin t nu _',

%= (_a sin t-_- A_ cos t) cos s-- al_sin e_At sin _, (103)

?,, _._-- (_a sin t _ A[3 cos t) sin e-- a x _[3 cos • -- A t cos I.

The displacements of point B on the v-axis (OB is of unit length) in the

directions of the axes u, v, and w (Figure 21), are by (91):

_?_, O, ?u- ( I 0 4)

The optical axis of the sight will therefore remain in place if the com-

ponents ?, and ?wof the resultant rotation are zero, i.e., if the following

equations are satisfied (according to (103)):

Aa cos t -- A[_sin t -t- a. = O,
(105)

(aot sin t -_- a_ _os t) sin • -_- _x a[_ cos 8 4- _t ©os e =0.

The variations of the polar coordinates of the point Sate, by (105):

a, =--a_ Gost + ap sin t,

A t = --a, a_ -- (6, sin t -_-a_ cos $) _ s.

These expressions are identical with (90) of § 5.

The component _, in (103) represents the small angle of rotation of the

sight about its optical axis v_ caused by the disturbance of the horizontal

stabilization and the variation of the angles • and t- When conditions (105)

are satisfied, i.e., when the sight's optical axis remains at rest, the angle

can be eliminated from the expression for ?o by means of the second

equation (90). The rotation of the sight about its optical axis then becomes

Amsin # -I- All cos _ (106)

This derivation is based entirely on a geometric consideration.

§ 7. Variation of the ship's roll and pitch angles

and of its course caused by a finite rotation of the

ship about an arbitrary axis

Laboratory tests of gyroscopic devices such as the gyroazimuthhorizon

are frequently carried out by rotating the housings of these devices through

finite angles about an inclined axis. If gyroscopes stabilize the inner ring

of the bicardan suspension (Figure 7) in the horizontal plane and stabilize

in addition a certain direction in this plane, then, when the housing is ro-

tated, the suspension scales will indicate the pitch and roll angles _ and _,

while the inner ring will indicate the variation of the angle "fbetween the
course line and the stabilized direction in the horizontal plane.
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We must now determine the magnitudes of the angles _, _, T from the

specified rotation of the bicardan suspension housing from its initial posi-

tion (at which _= [l= 0) and from the specified disposition of the axis of this

rotation relative to the housing.

This problem is equivalent to the problem of determining the variation

of the ship's pitch and roll angles and course for a finite angular displace-

ment of the ship from one position to another one. In fact, according to a

well-known theorem of kinematics, such a displacement can be obtained by

means of a single finite rotation of the ship (neglecting translatory motion)

about a suitable axis. Conversely, the pitch and roll angles and the course

determine uniquely the orientation in space of a ship whose location is given.

FIGURE 22 FIGURE 23

It should be noted that the replacement of a specific motion of a gyro-

system housing by some other simplified motion may in many other cases

lead to errors: this will be discussed in Chapter II, § 3.

Using the notation of § 1 (Figure 7), we assume a coordinate system zgz

to be fixed to the bicardan suspension housing, with the z-axis directed

along the bow pivot axis, the y-axis along the pivot axis _of the outer gimbal

ring, and the s-axis perpendicular to these two and directed upward.

We denote by g (Figure 22) the axis about which the housing of the bi-

cardan suspension can rotate together with the system zyz. We further de-

note by 8 the angle between the u-axis and the zy plane, and by _ the angle

between the z-axis and the projection of the u-axis on this plane.

Consider now an auxiliary coordinate system umo (Figure 23), in which

the u-axis is, as above, the axis about which the bicardan suspension hous-

ing can rotate; the v-axis lies in the z// plane and is perpendicular to the

projection of the u-axis on this plane; the w-axis is perpendicular to the

axes u and v and forms together with them a right-handed coordinate sys-

tem. The angle between the axes w and z is obviously equal to 8.

It is seen from F_gure 23 that the direction cosines of the system zyz

relative to the system ut_ are:

z y z

u cos 0 cos _b Gos 0 sin _ sin 0

v --sin _ cos _ 0

u, -- sin Ooos#/ --sin Osia _ c_sO

(107)
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Assume, in accordance with the formulation of the problem, that the zv .

plane was horizontal before the rotation of the suspension housing about

the m-axis. Introduce two fixed coordinate systems x°_ and u%,_, whose

axes coincide respectively with the axes of the coordinate systems xyz and

before the rotation of the housing. The x°l_ plane is thus horizontal.

FIGURE 24

The direction cosines of the system x°_z ° relative to the system u%#u_

are obviously identical to the direction cosines of the system zyz relative

to the system _, given by (107) :

u ° cos 0 cos _ cos 0 sin _ sin 0

v ° --sin _ cos _ 0

w ° --sin 0 cos _ --sin 0 sin _ cos 0

(108)

After the rotation of the housing through an angle ? about the m-axis

(Figure 24), which remains identical with the u0-axis, the direction cosines

of the system ub'w relative to the system ,,°vOw° will be:

u i 0 0

v 0 cos ? sin ?

w 0 --sin ? cos ?

(109)

The direction cosines of the system _ relative to the system x°y°z ° are

found from (108) and (109):

coszov= cos z'u* cosvu° _ cos zov"cos v_ _ cos z_ ° cos v_ =

_-----sin $ cos ? -- sin 0 cos _ sin 7.

(110)

The direction cosines are:

u cosOcos$ cos Osin $ sin$

v -- sin _ cos ? -- cos $ cos ?-- cos 0 sin ?

--sin Ocos _bsin ? --sin Osin _sin?

w sin _bsld ? -- -- cos _ sin ? -- cos 0 cos ?

-- sin 0 cos _ cos ? -- sin 0 sin _ Gos
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Tables(107)and(110)determinethedirectioncosinesof thesystemu_

relative to the systems xyz and x°_. The direction cosines of the system

zyz relative to the system x°_ can therefore be obtained from them:

where

z _ cos 0 cost _-[- cos y p co6 0 cos _ sin _-J- j_sin Ocos _ _

-J-sin Osin y -- cos 0sin _sin 9

y JACO60 COS_sJn _-- _ cos Osin2 J/-]- cos !, psin 0 sin _-J-

--sin0sJn? -J-cos Ocos 4Psin 9

z jAsin 0 cos_-_- _sin 0sin 41-- (i -- cos y) sins 0 -[-

-J-©oe 0 sin 0/sin T _ cos eeos_sJn? .J- _slt

(111)

_(t -- eos_) eos 0.

Table (11 l) gives the direction cosines between two coordinate systems

obtained from each other by means of a finite rotation through an angle ?

about an axis passing through their origin.

The inner ring of the bicardan suspension is stabilized in the horizontal

plane. The t-axis which is perpendicular to the plane of the inner ring

coincides therefore with the _-axis which is perpendicular to the horizontal

plane; their direction cosines relative to the axes x, y, z are respectively

equal.

The direction cosines of the system }_ (fixed to the inner ring of the

bicardan suspension) relative to the coordinate system x//z are given by (18):

where

z y s

cos _ 0 _sin [3
i . t i

-_ _sm acosp sinp -_- cos " _- sin • cost_

t I sin a cos [3 !r. _---r,os a sin p --W _- cos • cos p

R _ _/1 -- sin _ 0_sin s p.

The following equations, obtained from (18) and (111), express the equal-
ity of the direction cosines of the axes _ and _0 relative to the axes x. y, z:

5
-_ cos • sin _ ----(t-- cos ?) cos 0 sin 0 cos _-- cos 0 sin _ sin ?;
1

-- _- sin • cos _ _---_(1 -- cos T) cos 0 sin 0sin_b-J- cos 0cos _ sin?; (112)

i
_-cos ,, cos p_(t -- cos ?) sin2 0-J- cos ?.

Each of these equations follows from the other two.

Using equations (112), the angles of tilting _ and p of the bow and the

outer ring relative to the housing can be found for given angles _, 0, ?.
If the angles 0 and ? are assumed to be small, the first two equations

of (112) become, to a second-order approximation in 0 and ?:

a-------? cos _, p-----? sin _. (113)
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Formulas(113) become more accurate if we retain third-order terms

in 0 and ? in the expansions of the right-hand sides of (112}, and insert

(113} into the terms of higher order in ,, and _ in the expansions of the

left-hand sides of (112):

_t•
(114)

The coordinate systems _:, xyz, and x°y°z° coincide for ? = 0; when

_: 0, the coordinate system _: is rotated about the _-axis relative to

the fixed coordinate system x°y°z° by a certain angle T (Figure 25}. The

following relationship is obtained from (18) and (111):

sin ?;= cos _yO= cos _x cos y°x-_- cos _y cos yOy --_ cos _z cos y° z --_

cos _ [(t -- cos ?) cos20 cos _ sin _b-]- sin 0 sin?I-

- sin_[(t -- cos ?) cos 0 sin 0 sln _-- cos 0 Cos _ sln ?]. (115)

Equation (115} defines the angle T of the rotation of the inner ring about

the _-axis for finite rotations of the housing about the u-axis. The rotation

_o

FIGURE 25

is counterclockwise for -[_>0 (when observed from above); the course, i.e.,

the angle x between the north-south line and the _l-axis, is therefore re-

duced by "t when the housing is inclined (Figure 25).
Equation (115) becomes, to a second-order approximation in 0 and ?:

T=0_ +_ ?, e_ _ stn_ +p? cos¢. (116)

Inserting the second equation of (113) yields

T=O? ___._ ?l cos _ sin d/. (1 17)

A more accurate formula for T can be obtained by retaining in the ex-

pansions of the right-and left-hand sides of (ll 5) terms of higher order

than the second in 0, ?, and T-

Tiltings of the housing through the same angle but in opposite directions

about the u-axis cause different rotations from the initial position (?_0)

in the horizontal plane of the inner gimbal ring.

Numerical example. Let the suspension housing undergo oscil-

lations of amplitude ?,= 0.300 (17011 ') about the a-axis, let the a-axis form
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an angle 0--0.200 (11o28 ') with the horizontal plane, and let the projection

of this axis on the xy plane bisect the angle between the bow pivot axis x

and the outer gimbal-ring pivot axis ]/(9 = 45°).

The approximation formulas (113) and (117) yield:

t) for ?=-_0.300

_ =--_ cos _----0.2t2 (t2°9_

----? sm _ =--0.2t2 0 2°_),

! s
7=0? --_-? cos _ sin 9--0.0600--0.0225 ---0.0375(2_F_

2) for ?=--0.300

•=-{-0.2120_),

p= +0.2120_°_),

Z --" --0.0600 -- 0.0225 = -0.0825 (4o43').

On the other hand the accurate formulas (112) and (115) yield:

t) for V=-t-0.300

• ---0.217, [3_-0.205, T=0.088t;

2) for ? =-0.300

_---_-0.205, _=_-0.2t7, _--0.0820.

The approximate formulas (I13) and (llV) are accurate up to the second

figure after the decimal point for • and _, and up to the third figure after

the decimal point for "_. Formulas (114) for *,and _ are accurate to the

third figure after the decimal point; they yield:

for ?_3f-0.300 _-0.217, [_=-0.206;

for _=-0.300 _=-_-0.205, p--_- -1- 0.217.

The angular velocities of the bow and the outer ring relative to the

housing and the inner ring relative to an object fixed in space can be ob-

tained by differentiating the approximate equations (113) and (117). Assume,

for instance, that the law of variation with time of ? is expressed by

?-'-7, Sin _. (118)

Inserting this expression into (113) and (117) gives

=--?, cos _ sin _,

p =--?, sin _ sin ,,t.
i s

T=%, sin _ --T ?; COS_ Sin _ Sin'S= (119)

' ?:_sin _+_. sin*, -{-_?:_in_,2.,,

whence da
-_/-= --,_o cos _ ©os Q,t,

-_._ _--- --oK?. sin _bcos ad, (120)

d7 ' i
-_- =wS?. cos mt -- _-w?. cos _ sin _ sin 2 4.

In this case the motion of the inner gxmbal ring represents a super-

position of two harmonic oscillations, with frequencies u and 2_about the

vertical _-axis.
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ChapterII

ORIENTATIONOFGYRO-CONTROLLEDOBJECTS

§1. Theorientationaccuracyof anobjectlaunched
from aninclinedbase

Theproblem of the orientation of an object moving in steady motion

shortly after being launched from an inclined base is similar to the prob-

lems treated in Chapter I.

We denote by 01 and _ the heel and trim of the base at the moment the

object starts moving, and by 0 and _ the heel and trim of the object during

steady motion.

As in Chapter I, § 1, the trim is defined as the angle formed by the

longitudinal axis of the base or object with the horizontal plane; it is positive

when the base or object are inclined forward. The heel is defined as the bi-

hedral angle between the plane of symmetry of the base or object and the

vertical plane containing their longitudinal axis; it is positive when the base

or object are inclined to the right.

Let the object be launched from a starting device whose axis is parallel

to the base plane and forms a small angle _ with the latter's longitudinal

axis. It will be assumed that the gyroscopic device (top) is started simul-

taneously with the launching of the object, and that at the start the top axis

is either parallel to the longitudinal axis of the object or perpendicular to

its plane of symmetry, depending on the instrument design. In the latter

case it will be assumed that when the object is on the carrying base its

plane of symmetry is perpendicular to the plane of the base.

Since the time required for the object's motion to become steady is re-

latively short, it can be assumed that the top axis has at the beginning of

the steady motion the same orientation as at the start.
The pivot axis of the outer gimbal ring of the top's gimbal system lies

in the plane of symmetry of the object, and is perpendicular to its longi-

tudinal axis. It will be assumed that the instrument is installed very ac-

curately, so that mounting errors can be neglected. Throughout the motion

the controlling instrument maintains the object in a position in which the

latter's longitudinal axis is either perpendicular to the plane of the outer

ring or parallel to it, depending upon the instrument design.

The small oscillatory motions of the object, and in particular its yaw

can therefore be neglected in the calculations, and it can be assumed that

during steady motion the angle which the object's longitudinal axis forms

with the perpendicular to the plane of the outer gimbal ring is either zero

or a right angle. The angle between the top axis and the perpendicular to

the plane of the outer gimbal ring will be denoted by _. In technical ian-

guage this angle is called the top inclination (cf. ChapterVI, §3).
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Wedenoteby xs the course of the base at the instant the object is

started, and by x the course of the object during steady motion, the

course being defined as the angle between the north-south line and the

projection of the longitudinal axis of the base or the object on the hori-

zontal plane (cf. Chapter I, § 1).

It is easily seen that if the heel and trim of both base and object are
zero, then

x_xl-_-_s (121)

i.e., the longitudinal axis of the object remains parallel to the position

which the axis of the starting device occupied at the start*.

In the general case

x _--_xt-_-_ 3t-T. (122)

The angle T is the error in the orientation of the object caused by the heel

and trim of the base (0a, d/l)at the start and by the heel and trim of the ob-

ject itself (0, $) during its steady motion.

We are trying to find a relationship "f_--Jt(Sa,Ss, 0, _b;_)betweenthe angle T

and the angles 0a, _z, 8, _ for given values of the angle _.

i g

I/h A/ _t.__ /

t,

8_ S

FIGURE 26 FIGURE 27

We introduce a coordinate system _s'ql_ (Figure 26), whose _h-axis is

the projection on the horizontal plane of the longitudinal axis Ys of the base,

and whose _l-axis is vertical and directed upward. The angle x1 (Figure 27)

between the _1-axis and the north-south line defines the course of the base.

We introduce also a coordinate system xlylz I fixed to the base (Figure 26),

with the z_-axis perpendicular to the plane of the base and directed upward,

and the //z-axis coinciding (as already mentioned above) with the longitudinal
axis of the base.

It is easily seen that the direction cosines of the coordinate system xlylz I

relative to the system _1_]1_ are as follows:

x 1 cos 01 _sin _lsin _a _cos _bI sin 01

Ys 0 cos _s --sin _a

zz sin 8 z sin _z cos 0z cos _bI cos Os

(123)

* We consider here the ease in which angular adjustment of the gyroscopic instrument is made to compensate

for the angle _. The latter case will be considered later.
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Wealsointroduceacoordinatesystem_'l_,whose,I-axis is theprojec-
tiononthehorizontalplaneof thelongitudinalaxis y of the object, and

whose C-axis is vertical (Figure 28). The angle z between the _l-axis and

the north-south line is the course of the moving object (Figure 27).

It follows from (122) that the angle between the axes _l and lh (or, which

is the same, between the axes } and }l) is equalto _2ff'f. The direction

cosines of the coordinate system _1,1_ 1 relative to the system }_]_, are there-

for e

h cos(3-1-s) s,- h'-t s) 0
_, --sin (T-t-_) cos(T-t-s) 0

r., o o t

(124)

The direction cosines of the system zsyl_ relative to the system _

are finally obtained from (123) and (124):

z I cos 01 coe (7 "4-_) "J- coo I)1 sin (T -{"6) -- -- coe _ sin 01

-{- sin _ sin 01 sin (7 -_-_) -- sin _1 sin 01 cos (1 "1-_)

Yl -- C05_51sin ('1"J"_) C°$_1 c°s ('["_"_) --sln_ (125)

sl sin 01 cos (7 -t- _) -- sin ez sin (T-J- _) "l- cos 4'1cos el

-- sin _ cos 0, sin ('g_) -_-sin _1 ¢oe 01 oo8 ('f .'J-_)

Consider first the design of a gyroscopic control instrument with the top

axis parallel to the object's longitudinal axis at the start, and therefore

parallel to the axis of the starting device.

e z

FIGURE 28 FIGURE 29

The projection of a unit length $ of this axis on the axes x l, y,, and zs
fixed to the base are equal to (Figure 29):

t., _ sin _,

re, -----COS_, (126)

t.,_O.

The projections of this unit length on the axes _, 7],and _ can now be

found by the well-known formula of analytical geometry:

t_ = t,, cos z,_ _ tv, cos YI_ _ t,, cos _E.
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The following expressions are obtained:

t_= [cos_lcos (Tnt-_)-}-sin _b,sin 8,sln (T-_-8)]sin |-

--cos_,sin(I"+ _)©os_.

t.: [cos|_,sin (Tnu _)-- sin _, sin O,cos (Tnl-_)]sin 8-It" (127)

-{-cos_,cos(T+ _)Go'a,

tc =--cos %b,sin 81sin _ -- sin %%,cos Ik

Since-the top axis maintains its direction in space, formulas (127) are

also true for the projections of a unit length of the top axis on these same

axes.

Consider the projections of this unit length on the axes of the system rgz fixed

to the moving object. The longitudinal axis of the object is perpendicular to

the plane of the outer gimbal ring. It follows (Figure 30) that the top axis J7

lies in the plane of symmetry of the moving object and forms an unknown

angle _ with the longitudinal axis (top inclination). The projections of unit

length t on the axes of the coordinate system gl/zare equal to

to= 0,

iv-----COS_, (128)

t, --_ --sin _.

FIGURE 30

The direction cosines of the system xyz relative to the system }_I:are

identical with the direction cosines of the system xly,g*relative to the sys-

tem |,TI, _ given by (123),

z cos _ --sin _ sin 8 --cos # sin 8

y 0 cos _ --sin _,

z sin_ sin _ cos 0 cos _ cosO

(129)

The projections of unit length t on the axes |, _l, and C can now be found

from (129) and (128):

t! =--sin 6 sin II,

it= cos _ cos _i-- sin _ cos 8 sin _, (130)

t¢ _---sir' _ cos p-- COS_ ©06 0 sin p.
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Formulas(127)werepreviouslyobtainedfor thesameprojections.The
followingthree relationshipsareobtainedbyequatingtheright-handsides
of (127)and(130):

[cos Ox cos (T "_- 8) -_ sin _1 sin 01 sin (T-_- _)] sin 8-

cos _I sin (T-J- _) cos _ _ _sin Osin [3;

[cos 01 sin (T'_- _) -- sin _i sin 01 cos (T'J- _)] sin _-_- (I 31 )

-J- cos _I cos (T -_- _) cos _ = cos _ cos _-- sin _ cos 0 sin _;

_¢os _x sin DI sin _sin _z cos _ _ --sin _b cos _ -- cos _ cos _ sin _.

Only two out of these three relationships are independent. The unknowns

are the angles _ and "f, and the angles 01, _v 0, _, _ must be given.

For _0 and _----_0 (i.e., when the axis of the starting device is parallel
to the longitudinal axis of the base, and the trim of the object is zero),

(131) becomes

--cos _; sinT ='--sin 8 sin p,

cos _z COST--_ cos J], (132)

--sin _ = --cos _ sin p.

Dividing both sides of the first of equations (132) by the respective sides

of the third of these equations, we obtain

sin T_tg _tg _l. (133)

This formula gives the angle T for _-_0, _-_-0.

For _---4 ° and 0---|0 °,

sin T _- 0.0123; T_---4_.

Formula (133) could be obtained more simply by assuming from the

beginning that the trim of the moving object is zero and that the axis of its

starting device is parallel to the longitudinal axis of the base. It then be-

comes clear why the value of the base heel angle 01 has in this case (and also

in the case _---0, _0) no influence on the value of the error T in the course

of the moving object and therefore does not appear in (133).

We assume that the angle _ between the axis of the starting device and the

longitudinal axis of the base, and the object trim _ are of the order of sev-

eral degrees. The numerical example using formula (133) shows that the

deviation Tof the object from the course caused by the heel of the object and

the trim of the base is also small. The angles _, _, and Twill therefore be

considered so small that their squares and products can be neglected. The

expansion of the right-and left-hand sides of equations (131) neglecting all

terms of higher order than the first in _, _, T yields:

cos 81 _ (T "J- _) cos #/x= _sia 0 sin _,

--8 sin 0/1sin 0 x -_- cos _1: cos [3_ _ cos 0 sin D, (134)

cos _I sin OI- sin _i = _ cos [3-- cos 0 sin [3.

Multiplying the second equation of (134) by _, adding to the third equa-

tion of (134), and neglecting second-order terms in _ and ), yields:

--_ cos _, sin 0 a-_- _ cos _, -- sin _b,= --cos 0 sin 13. (135)
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Dividing both sides of the first equation (134) by the corresponding sides

of equation (135) gives, after some simplifications, the required formula:

C4_ 1 o

7= tg _i tg a-J-(_- + s,n _ tg 8-- i) t-- _ tg $. (136)

Numerical example. Let

_,--8 o, _,=io, o=i0 o, _--_2o, a-----e,
then

----0.0123_-0.0017q-0.o0_--0.0202(ioio_.

Formula (136) and the numerical example show how important it is for

orientation accuracy to obtain as small a steady-motion heel angle 0 of the

moving object as possible. This applies to a gyroscopic instrument in

which the top axis coincides, at the beginning of the motion, with the longi-

tudinal axis of the object.

Consider now an instrument whose top is started in a position in which

its axis is perpendicular to the object's plane of symmetry. It was as-

sumed above that the object's plane of symmetry is perpendicular to the

base plane when the object is still in the starting device. The projections

R,

FIGURE 31 FIGURE 32

of a unit length p of the top axis on the axes of the coordinate system zlylzl

fixed to the base are (Figure 31):

Ps,= c0sS,

Pv, -- _sin 8, ( 13 7)

p,, "- O.

The projections of this unit length on the axes of the coordinate system

_ can be found by using Table (125) of the direction cosines of the system

zaylzIrelative to the system E_:

pE = [cos _x cos (T"_- _)-]- sin _bl sin 01 sin (T-{- 8)] ©os 8 -_-

-J- cos _x sin (T-{" 8) sin 8;

p_ =---[cos _1 sin(T -_- 8) -- sin _l sin 81 cos (T-_- 8)] cos 8-- (138)

-- cos _l cos (1' -]- _) sin 8;

p_ --_ --cos _bI sin 81 cos 8 -_- sin _a sln 8.
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We now find the same projections as functions of the angles 0, '}, and _ .

referred to the moving object. Due to the action of the control system the

longitudinal axis of the object lies in the plane of the outer gimbal ring and

is therefore parallel to the pivot axis of the inner gimbal ring. The projec-

tions of p on the axes of the coordinate system z]/zfixed to the moving ob-

ject are (Figure 32):
po---=_p,

Pv-- 0, (139)

p. = --sln p.

The following expressions are now obtained from (129) for the projec-

tions of p on the axes of the coordinate system _:

Pt----cos 0 ms[3-- sin 0 sin p;

p_ =--sin _ sin 0 cos [3-- sin '} cos 0 sin p; (140)
pc =--cos '} sin 0 cos p-- cos '}cos 0 sin p.

Three equations, each of which follows from the other two, are obtained

by equating the right-hand sides of (138) and (140):

[cos 0,cos ('f-1-_) -1- sin '}xsin 0,sin (T'_ _)] cos 8-I-

nt- cos '}1 sin (T _- _) sin S = cos 0 cos_-- sin 0 sin _;

[cos _l sin (T -_- _) -- sin '}1 sin 01 cos (T-[- _)] cos a --

__ cos _] cos (T nt_ _) sin _ =_sin _ sinO cos p_ sin '} cos e sin [}; (141)

-- cos '}l sin 0x cos _ nt- sin '}1 sin _ =

= --cos _ sin 0 cos p -- cos '} cos 0 sin p.

The unknowns in (141) are the angles p and T-
Dividing both sides of the second equation (141) by the corresponding

sides of the third equation gives:

[¢°s II sin ('f -_- t) -- sin d/Jsin 01 cos (_ -_- _)] cos t -- cos'_l _ (7 -_- t) sin |
-- co_ _x sm S1 cos 8 -I- sin _1 sin 8

_---tg'}. (142)

It follows that the error "f in the course of the moving object is in this case

(top axis perpendicular at the start to the object's plane of symmetry) in-

dependent of the object's heel _}. This is easily understood, since the inner

gimbal-ring pivot axis of the top is parallel to the object's longitudinal axis

during steady motion of the latter.

For '}=0 (the object has no trim) (142) becomes

tg(T-_- _) = sin _ sin Ol +c°s_] t8 | (143)

If, in addition, 3=0 (the axis of the starting device is parallel to the

longitudinal axis of the base), then (143) is simplified to

tgT= sin _l tg 0,. (144)

Formula (144) can also be obtained more simply by assuming from the

beginning that the angles 8 and _ are zero.
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In the general case (_=/&O, _=I=O)the angles ,, _, and T will be assumed
to be small. Equation (142) can then be written, with an accuracy of up to

first-order terms in _, _, and T, in the form:

(T-i- _) COSOs -- sin _1 sin Ox-- _ cos _1 _---_ cos _1 sin 01, (145)

whence

T'- sin _, tg 8 z cos_1  ,tB0,. (1,8)

Consider a numerical example for the same angles as before:

81--8o; 4--40; _--2°; 8---10°; _6 o.

In this case the course error of the moving object is:

T= 0.0098 + o.ooo8+ 0.0049 = 0.0t55 (52,).

We now return to the first design variant and consider the case of the so-

called angular setting of the instrument at an angle _ to the left. The instru-

ment must have some device causing the control system to bring the object

to a position such that the perpendicular _to the plane of the top's outer

gimbal ring forms an angle _with the longitudinal axis y of the object

(Figure 34). As a result, the object turns through an angle _ after leaving
the base, so that the course of its steady motion will be identical with the

course of the base at the start. We again denote by T the error in the mov-

ing object's course.

,t"

ad_ I g,

FIGURE 33 FIGURE 34

In this case (Figure 33), the angle T will be the angle between the axes

E and _,or, which is the same, between the axes _l and _hof the coordinate

systems _ and _,_]x_1. The direction cosines between the axes of these

two coordinate systems must be of the form:

_1 oos'f sin7 0

qx --slnl cost 0

c, o o t
(147)

This result is obtained from (124) by replacing the angle -f-_-_ by the

angle If.
In the same way we obtain directly from (127)the projections of t on the

axes of the coordinate system, _ql:, without having to find the direction
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cosines of the system z_ls i relative to the system E_:

t| _ (cos 01 cos T "_- sin ¢?xsinOxsin'f) sin 8 -- cos _x sin T cos 8;

t_--- (cos 01 sinT-- sin_lsin01 cos T) sin 8 -_- cos _bxcos T cos 8; (148)

tc=--eos _1sin 0_sin 8-- sin _ cos 8.

We now introduce the coordinate system x'bld fixed to the outer ring of the

top's gimbal system (Figure 34). The d-axis of this system coincides with

the z-axis of the system xyz fixed to the moving object; the x'-axis is the

pivot axis of the inner ring of the top's gimbal system. The direction

cosines of the system z'ifz' relative to the system =yz are

= y z

z' cos 8 --sin 8 0

If sin8 coma 0 (149)

g 0 0 t

since during steady motion of the object the angle between the axes y and If

equals 8.

The top axis Hlies in the Ifz' plane and forms an angle _ with the If-axis

(Figure 34). The projections of unit length tof the rotor axis //on the axes

of the coordinate system ='ifz' are

t.,= O,

tf-_ e,osp, (150)

t,, _---sin p.

The projections of t on the axes of the coordinate system xyz are

t.= eosp stn a;

t,= Cosp cos 8; (151)

t,=--stnp.

This follows either from (149) or directly from Figure 34.

The projections of t on the axes of the coordinate system _1_ are there-
fore

t|= cos 8 cos p sin 8-- sin 0 sln p;

gl =--sin _1sin 0 cosp sin 8 -_- cos _ cos p cos 8-- sin _ cos 0 sin p; (152)

t¢ = --cos _ sin 0 cos p sin 8 -- sin t cos p cos 8 -- cos _ cos 0 sin p.

This follows from (151) and (129).

The following three equations (only two of which are independent} for

the unknowns _ and T, are obtained by equating (152) to (148):

(cos _1 cos T-_- sin _l sin 0 x sin T) sin 8 -- cos _ sin T cos 8 =

= cos 0 cospsin 8-- sin O sinp;

(cos 01 sin T-- sin _l sin 0 xcos T) sin 8 -_- cos _x cos T cos 8 =

=-- sin _?sin O cos p sin 8 + cos _ cos p cos 8 -- sin _ cos 0 sin p;

-- cos _x sin 81 sin 8 -- sin _x cos 8 =

=-- cos _ sin 0 cosp sin a-- sin _ cos pcos 8-- cos _ cosS sin p.
If all terms of higher order than the first in T, 8, and _ are neglected,

54



theseequationsbecome

8 cos O, -- T cos _l = 8 cos 0 cos p -- sin 0 sin p,

--3 sin _z sin 01 71- cos $I _-- cos p -- $ cos 0 sin p, (I 53)

_8 cos _bz sm 01 -- sin _b1 = _8 sin 0 cos p -- _ cos p _ cos 0 sin p.

We multiply the second equation of (153) by --ScosO and add it to the

first; we also multiply the second equation by $-{-3 sin8 and add it to the

third. Neglecting terms of higher order than the first in 3 and _, we
obtain:

8 cos 01 -- 7cos $1-- 8 cos _, cos 0 =--sin 0 sin p,
(154)

--_cos $1 sin I)l -- sin _bI -_- cos $1 ($ -_" _ sin _) _- --cos 0 sin _.

Dividing the first of these equations by the second yields:

--_ cos _; sin O]-- sin _, -l- cos _ (d/-I- a sin J) -'_ tg 8. (15 5)

This equation contains only the unknown T, and its solution is
!

T = tg $1 tg 0 -{- (_os-_-{- sin 01 tg 0-- _oa--$-) a-- $ tg 0. (156)

This formula differs only slightly from (136) obtained for the case when

the moving object starts with zero angular setting. Using the same values

of the angles,

_2=8°, $,=4% 0=t0 °, $=--2 °,
equation (156) gives

T= 0.0123-_- 0.0001 -_- 0.0062 = 0.0186 (IO4_).

Formulas (136) and (156) show the importance of obtaining as small an

object-heel angle as possible, for accurate orientation, in the case of the

first design variant of the gyroscopic instrument (top axis parallel to the

object's longitudinal axis at the start). For zero heel angle 0 the error T
is of the order of two to five minutes of an arc.

When the object starts from a horizontal base, 01_0 , $1--0, _----_0, and

therefore, according to (136):

T--_ -- _tge_; --_0. (157)

if the object has a trim _b_0 during steady motion, the angle T will be ne-

gative for _)<_ 0 (heel to the left), which corresponds to a deviation of the

object to the left of the specified direction. For a heel to the right, the

object will deviate to the right during steady motion.

The value of this deviation can be considerable. Thus, for $= --2 ° and
0 =--I 0°:

= -- 0.035.0.t75 = -- 0.006t (2t9.

§ 2. Deviation of a self-guiding missile from the

specified direction during flight

Problems similar to those discussed above are met in missile flight

theory. We solve one of these problems in this section.
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As an example consider the German V-2 rocket in which flight control

is by two free gyroscopes. The pivot axes y'and x" of the outer gimbal

rings of the gyroscopes are set perpendicular both to the axis of symmetry

z of the rocket and to each other (Figure 35).

FIGURE 35

The rocket is placed vertically on the launching pad, and the ]/'-axis

(the pivot axis of the outer gimbal ring of the so-called gyro-verticant)

is aimed at the target by rotating the rocket about the vertical. As a re-
sult the x"-axis (the pivot axis of the outer gimbal ring of the so-called

gyrohorizon) becomes perpendicular to the vertical plane _]_ (Figure 35)

which contains the straight line connecting the rocket-launching pad with

the target.

The axes of the gyro housings or, which is the same kinematically,

the pivot axes 41 and _ of their inner gimbal rings, are set on the launching

pad parallel to the axis of symmetry z of the rocket and are therefore

vertical.

The rotor top axis }1 of the gyro-verticant is set on the launching pad

perpendicular to the _]_ plane and maintains this orientation throughout the

rocket flight (if instrument errors of the gyro are neglected). The axis _]s

of the gyroborizon rotor is oriented parallel to the horizontal axis "_ and
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remains parallel to this direction throughout the flight (again neglecting

instrument errors). The Earth's rotation is neglected.

Consider the following coordinate systems:

1) a coordinate system _'l_whose C-axis is vertical and whose _-axis

is aimed at the target. This coordinate system is at rest relative to the

Earth;

2) a coordinate system zltzfixed to the rocket body. The s-axis of this

system is the axis of symmetry of the rocket, the z-axis is parallel to the

_¢'-axis of the outer gimbal ring of the gyrohorizon, and the y-axis is par-

a11el to the axis Ifof the outer gimbal ring of the gyro-verticant;

3) a coordinate system z_Iff fixed to the outer gimbal ring of the gyro-

verticant. The Ifs'plane of this coordinate system contains the outer gim-

bal-ring pivot axis Ifand the axis _ of the gyro-verticant housing, which
coincides with the _-axis:

4) a coordinate system _z_i_ifixed to the gyro-verticant housing, the

E3-axis being identical with the rotor axis of the gyro, the _-axis being, as

just mentioned, the axis of tilting of the gyro housing relative to the outer

gimbal ring;

5) a coordinate system zJ'/fg'fixed to the outer gimbal ring of the gyro-

horizon. The d'-axis of this coordinate system is the pivot axis of the outer

gimbal ring of the gyrohorizon and is parallel to the z-axis of the coordi-

nate system xltzfixed to the rocket body; the |f-axis coincides withthe _i"

axis;

6) a coordinate system |s_ fixed to the gyrohorizon housing. The

axis of the gyrohorizon rotor coincides with the _-axis; the housing can

be tilted relative to the outer gimbal ring about the k-axis.

The corresponding axes of all these systems either coincide or are

parallel while the rocket is on the launching pad.

The following angles, related to the gimbal systems of the gyros, are

recorded during flight:

1) the angle ? between the z- and K-axes (or, which is the same, be-

tween the axes z and _¢). The angle ? is the angle of tilting about the If=axis

(i.e., about the v-axis) of the rocket body relative

to the outer gimbal ring of the gyro-verticant

_r I Z_ (Figures 35 and 37);

2) the angle 0 between the axes If and _h (or,

which is the same, between the axes z'and _l), i.e.,

the angle of tilting about the _-axis of the outer

! gimbal ring of the gyro-verticant relative to the
gyro housing (Figures 35 and 38);

3) the angle _ between the axes • and g' (or
between the axes !/and Ifg, i.e., the angle of tilt-

ing about the z"-axis of the rocket body relative to
the outer gimbal ring of the gyrohorizon (Figures

FIGURE 36 35 and 40).

The rocket is guided so as to make the angles ?

and 8 zero and the angle _ vary as a given function of time, corresponding

to the so-called flight program.

Our problem can be stated as follows: let the angles ? and 0 recorded

by the gyro-verticant, and _ recorded by the gyrohorizon, be known.

Calculate the angle _ giving the deviation from the _]-direction of the pro-

jection of the rocket axis • on the horizontal plane |_](Figure 36).
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Consider unit length r of the rocket axis s (Figure 36); its projections

on the axes of the coordinate system |_ are respectively

r_= r_ =colt sin il,

rl = cos z_ = cos_, c_ 8, (158)

re= _os_= sin T,

where T is the angle between the rocket axis and the _ horizontal plane.

It is obvious (Figure 36) that

---_. (159)
r_ coss_

It follows that to determine the angle a we must know the direction cosines

of the rocket axis z relative to the fixed axes _ and _ in terms of the angles

?,0, and _.
To do this we find the direction cosines of the system xyz relative to the

system }_ in two different ways: first, through the angles related to the

gyro-verticant (the angles ? and 0 in particular), and then through the angles

related to the gyrohorizon (the angle _ in particular), and compare the re-
sults.

The direction cosines of the system _]$' relative to the system xVz

(Figure 37) are
z y z

x' coo ? 0 sin ?

v' o i o
,d _sin ? 0 cos ?

(160)

For ? > 0, the system zyz (fixed to the rocket body) is rotated counterclock-

wise about the _-axis (parallel to the y-axis relative to the system a_y_

X

FIGURE 37

_,#_z____..-_ "r_ _'

FIGURE 38

(fixed to the outer gimbal ring of the gyro-verticant) if viewed from the

positive direction of the ]/'-axis.

The direction cosines of the system |1_1_ l relative to the system _d_d

(Figure 38) are

_1 cos 0 ---sin 0 0

•1/1 sinO coeO 0 (161)

c_ o o t
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For 0 :> 0, the system zs_f (fixed to the outer gimbal ring of the gyro-verti-

cant) is rotated counterclockwise about the _l-axis (which coincides with the

_-axis) relative to the system |l_ll_ (fixed to the gyro-verticant housing)
if viewed from the positive direction of the _-axis.

The direction cosines of the system |l_h_ relative to the system zyZ can
now be found from (160) and (161) by using the methods of Chapter I, § 1:

z l/ •

|l cos ? ¢osO --sin 0 sin ? cos 0

_il cos? sinO ©osO sin?sin 0 (162)

_ --sin ? 0 cos ?

Finally, the direction cosines of the system _1_h_1 (fixed to the gyro-
verticant housing) reLative to the fixed coordinate system _ are deter-
mined (Figure 39). We denote by $* the angle between the axes _] and 1h

(or, which is the same, between the axes _and _).

t

FIGURE 39 FIGURE 40

Assume that for _*>0 the system _11h_x, fixed to the gyro-verticant hous-

ing, is rotated clockwise about the gyro-verticant rotor axis relative to its

initial position when the rocket is on the launching pad. The angle _* cannot

be indicated by the gyro-verticant, and must be considered as unknown. The

required direction cosines are:

|, t 0 0
_, 0 cost" --sin _*

rn 0 sin _" cos _"

(163)

The gyro-verticant rotor axis |i remains, as already mentioned, paral-

lel to the horizontal axis _ throughout the rocket flight, since it is assumed

that there are no instrument errors in the gyros and that the Earth's rotation

is negligible.

The direction cosines of the system xyz relative to the system |I]_ are

found from (162) and (163):

x cos ? cosO cos ? sin Ocos _* _ sin ? sin _*

y --sine eosOcoa_*

z sin ? cos O sm ? sin Ocos q** -[- cos ? sin _*

C

-- cos ? sin Osin _* -- sin ? cos _*

_cosOsin _* (164)

-- sin ? si n Osin _b* -_ cos ? cos _*
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The direction cosines are given here as functions of the angles ?, 0, and

_. related only to the gyro-verticant. It remains now to determine these
same direction cosines as functions of the angles _, a, and _. (cf. below)

related to the gyrohorizon only.
The direction cosines of the coordinate system _¢'_/'_(fixed to the outer

gimbal ring of the gyrohorizon) relative to the system xyz (fixed to the

rocket body) (Figure 40) are:

z Y s
! 0 0

_' 0 co6 _ sin

_' 0 --sin _ cos_

(165)

ER rm

z"Jz

For _>0, the coordinate system xyx is rotated clockwise about the xe-

axis (the pivot axis of the gyrohorizon's outer gimbal ring, parallel to

the z-axis) relative to the system _l_ef, if viewed from the positive direc-

tion of the x"-axis.

The direction cosines of the system |2_ (fixed to the gyrohorizonhousing)

relative to the system tywf (fixed to the outer gimbal ring of the gyro-

horizon) (Figure 41) are: x" _' l"

E, cos O --sin _ 0

_k sin O cosO 0 (166)

o o 1
The coordinate system _¢'_' is rotated counterclockwise through an

angle 0 about the gyro housing axis _s relative to the coordinate system

}s_" The angle 0 is usually not indicated and must therefore be consid-
ered as unknown.

FIGURE 41 FIGURE 42

The direction cosines of the system _Th_ relative to the system _, can

now be determined from (165) and (166):

z y z

_, cos8 --cos _ sin 8 --sin _ sin 8
% sin{} coe_ cos 0' sin _ cos 0 (167)

0 --sin _ cos
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We finally determine the direction cosines of the coordinate system }sTh_,

fixed to the gyrohorizon housing, relative to the fixed coordinate system

}_ (Figure 42). According to our assumptions, the axis of rotation of the

gyrohorizon rotor _m maintains its direction in space throughout the flight,

and is therefore always parallel to the fixed horizontal axis _ We denote

by ?*the angle between the axes _ and _t (or, which is the same, between

the axes _ and _s),and consider it as positive if the coordinate system }sT]t_

is rotated counterclockwise relative to the coordinate system }_l_if viewed

from the positive direction of the _ls-axis. The angle ?* cannot be indicated,

and must therefore be considered as unknown.

The required direction cosines are therefore:

_, cos?* 0 --sin ?*
_, 0 t 0 (168)

sin _* 0 cos_*

The direction cosines of the system xyz relative to the system _{: are

obtained from (167) and (168) as functions of the angles _, 0, and ?*, re-

lated to the gyrohorizon only:

|

x cos 8 cos ?*

y --cos _ sin 0 cos _*--

--sin _ sin ?*

z _sin _ sin 0 cos ?* -_-

-_- COS_bsin ?*

sin {} --cos{} sin ?*

cos_ cos6 cos_sin Osin ?* _

--sin _cos?*

sin _ cos e sin _ sin 8 sin'?* -_-

cos _ cos ?*

(169)

The angle _ (the angle of deviation from the axis _, aimed at the target,

of the projection of the rocket axis - on the horizontal plane) is found most simply

from (159), takingthe value of cosz[ from (164)and thatof cosg_ from (169):

tg _ cos,_ sin ? cos 0 (170)
cOSz_]_ _ "

To obtain the angle 0 as function of the angles _, 0, and _, we equate

the values given in (164) and (169) for the direction cosines of the }-axis

relative to the coordinate system xyz. This yields the following three

equations :

cosx_-_ cos_cosO_ cosOcos?*,

cosy_ =--sin O _-----_--cos _ sin 8 cos ?* -- sin _ sin ?*, (171)

cos z_ = sin _ cos 0 =--sin _bsin 0 cos _* nt- cos _ sin ?*,

each of which follows from the other two.

Multiplying the second equation of (171) by _cos_, the third by _sin),

and adding, we obtain

cos _bsin 0 _ sin _bsin ? cos 0 _- sin 0 cos ?_. (172)

Dividing this equation by the first of equations (171) yields:

tg 0=-_- tg O--tg ? sin _, (173)

which determines the angle _ as a function of the angles ?, 0, and _ indicated
by the gyroscopic instruments of the rocket.
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Wealsohave
i

cos a
(174)

Inserting this into (170) yields:

cos0sin? cos_btg 0 -- tg y sin _) ,' (17a)

which is simplified to the following final formula for the angle _:

___ tg? _/cos2_cos_(}2v(sin_sin_cos0__sinQcos_b_. (176)
tg -- sin

From this formula we find that _=2 for the limiting case d/=0 and

?_=0. In fact, for _b=0 (Figure 35), the rocket axis z is parallel to the
z'-axis which coincides with the axis of rotation of the gyrohorizon hous-

ing _, which in its turn is perpendicular to the rotor axis _]s,and therefore
also to the fixed axis _l. It follows that for _b=0the rocket axis z, and its

projection on the horizontal plane _I, are perpendicular to the axis _I

aimed at the target, i.e., 8--';.

For_b_, (176) becomes
tg 8 = tg _ Gos0. (177)

This simple formula can also be derived directly.

Taking O_0 in (177), we find that _-_-?. It is easily seen that in this

case the rocket axis z lies in the horizontal plane. In fact, for 0=0 the

y(y_)-axis lies in the vertical plane, perpendicular to the }s-axis (Figure 38);

on the other hand, for -- 2 the y-axis lies in another vertical plane, per-

pendicular to the _12(y_-axis. The y-axis is therefore parallel to the verti-

cal axis _, and the z-axis is parallel to the horizontal plane E_I.

§3. Some general considerations on methods for

solving problems on the geometry of

stabilization systems

It is evident that the determination of the direction cosines between dif-

ferent reference frames is of much importance. Every problem was usually

reduced to a comparison of the direction cosines of two given reference

frames obtained in two different ways. It is therefore important to simplify

this process as far as possible in order to avoid lengthy and repetitive oper-

ations which may introduce errors.

The two specified reference frames usually represent the initial and final

positions of a trihedron, which performs finite rotations about one or an-

other of its axes (edges) in a specified order.

It is easily seen that if this trihedron performs successively three finite

rotations, one about each of its axes, then only two essentially different

sequences of such rotations are possible. The problem therefore reduces

to obtaining once and for all two essentially different tables of the cosines
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of the angles between the trihedron axes in their initial and their final posi-
tions.

We denote the axes of the trihedron by a, b, and c, the initial positions

of these axes byz, y, and z, and their final position by |, 11, and _. Let the

axes a, b, and c form a right-handed coordinate system (Figure 43). We

denote by ,, the angle of rotation of the trihedron abe about the a-axis, by p

the angle of its rotation about the b-axis, and by T the angle of its rotation

about the c-axis. These angles are positive when the rotation is counter-

clockwise. The displacement of the trihedron abc from position zyz to

position |Ii_ by successive rotations, namely, through an angle a about the

a-axis, an angle _ about the b-axis, and an angle T about the c-axis is called

a right-hand displacement or a displacement of the first
kind.

izl _)

Oh) ,,

_z "x(-)

FIGURE 43

The displacement of the trihedron abe from position zVz to position }_]_

by successive rotations, namely, through an angle _ about the b-axis, an

angle _,about the a-axis, and an angle T about the c-axis is called a left-

hand displacement or a displacement of the second kind.

It is easily seen that any other displacement of the trihedron composed

of three finite rotations, one about each of its axes, can be reduced to one

of the two displacements described above, provided the trihedron axes are

suitably denoted by a, b, and c, and the angles of its rotations about these

axes bye, _, andT.

Let the trihedron uvw, whose axes form a right-handed coordinate sys-

tem, undergo a displacement from the initial position ,*°b_w° to the final

position u*ve_ * by means of a rotation through an angle z about the w-axis

followed by a rotation through an angle _ about the v-axis, and finally by a

rotation through an angle _ about the -,-axis. We denote the v-axis by a,

the w-axis by b, the u-axis by e, and the angles as follows:

,----5,x=_, _-----T.

It is seen that the trihedron abe is right-handed (i.e., the axes a, b, and ¢

form a right-handed coordinate system), and that the sequence of rotations

is about the axes b, a, c. This example thus corresponds to a rotation of

the second kind.

The displacement of a rigid body determined by the classical F,uler

angles _, 0, and _ (Figure 44) does not belong to the class of displacements

considered here, since it consists of a rotation of the trihedron abe through

an angle _ about the axis ¢(_), followed by a rotation through an angle 0
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about the axis a(x'),and then again through an angle ? about the axis C(Z).

This is also the reason for the inconvenience of using the classical Euler

angles in the study of small displacements of a rigid body. Such displace-

ments usually correspond to large angles _ and ? whose difference is small.

We now obtain the direction cosines of the system xyz relative to the

system }'l_ for right-and left-hand displacements of thetrihedron abe.

For displacements of the first kind, the first rotation is through an angle

a about the axis a (x). This rotation brings the trihedron abe from the posi-

tion xyz into a position a_lf_/ (Figure 45).

tem z'y'z' relative to the system zyz are

z y z

z' 1 0 0

y' 0 cos a sin z

z' 0 --sin a cos a

The direction cosines of the sys-

(178)

The next rotation is through an angle _ about the axis b(y'); it brings the

trihedron abe from the position x'y_z ' into a position }x_h_ (Figure 46).

!@

&

FIGURE 44 FIGURE 45

The direction cosines of the system _1_1_ relative to the system z'lf$',

are g' It

_I cos {3 0 --sin

_l, 0 t 0 (179)

4, sin _ 0 ©os [3

1"he direction cosines of the system _l_ll_ relative to the system xyz are

from (178) and (179):

z y z

_, cos _ sin a sin [3 --cos a sin

% 0 cos z sin a

_1 sin _ --sin a cos 13 cos a cos [3

(180)

The last rotation of the trihedron abe, that is the rotation through the

angle "f about the axis c (_1), corresponds to bringing the trihedron from

position },_ls_l into the final position _ (Figure 47).
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Thedirectioncosinesof thesystem_s-qs_1relative to the system E_ are:

_ cos T --sin T 0

_h slat cos T 0 (181)

o o t
The direction cosines of the system xyz relative to the system E_, which

define a displacement of the first kind (consisting of consecutive rotations

of the trihedron abc about the axes a, b, and c), can now be obtained from

(180) and (181). These direction cosines constitute a table of the first kind.

It has the form:

z cos _ cos T --cos p sin T sin

!/ sin a sin _ cos T-_- --sin a sin _ sin T _t- --sin aco6 _

_cosasinT -I- cos z cos T

z --cos a sin _ cos T -_- cos z sin _ sin T "_- cos z cos

-_- sin • sin T -J- sin a toe T

(182)

We now determine the same direction cosines for a displacement of the
second kind. In this case the first rotation of the trihedron abe is about

the axis b(y) through an angle _ (Figure 48). As a result the trihedron abe

#

FIGURE 46 FIGURE 47

is brought from the initial position zyZ into a position z_ifz W.

cosines of the system xwynZ" relative to the system xyz are:

z y z

zn cos _ 0 --sin

f o o
z _ sin [3 0 co6

The direction

(183)

The next rotation of the trihedron abc is through an angle g about the

axis a(_ This brings the trihedron from the position xWyW_ into a position

_s_h_ (Figure 49). The direction cosines of the system _s_l_ relative to the
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system zvifz v are

i o o

0 cos • sin g (184)

0 --sin.. cos..

The direction cosines of the system _s'qs_i relative to the system _s can

now be found from (183) and (184):
z y •

_, cos p 0 --sin p

sin..sin p cos.. sin.. ¢_ p

cos..sin p --sin" ¢c_.. cos p

(185)

The last rotation through an angle T about the axis c (_q_ brings the tri-

hedron abe from position _s_ls_ into the final position |_i_ (Figure 50). The

FIGURE 48 FIGURE 49 FIGURE 50

corresponding direction cosines are similar to those in (181), i.e.,

_, cos T --sin T 0

_l sin T cos T 0 (186)

o o t

The direction cosines of the system xyz relative to the system _r_ can

now be found from (185) and (186):

z cos p cos T -_- --cos p sin T -_- sin p cos..

-]- sin p sin • sin T _- sin p sin • cos 7

y cos a sin T cos a cos T --sing (187)

z --sin _ Cos T_ sin _ sin T -_- cos _ cos g

_cos p sin a sin T -{-cos psin ¢COST

This will be called a table of the second kind. It defines a left-handed

displacement of the trihedron abe from the position xyz to the position _

by means of consecutive rotations about the axes b, a, and ¢.

In view of the properties of finite rotations, the position of the coordinate

system _ defined by (182) does not coincide with the position of the co-

ordinate system [_ defined by (187) for equal angles _, _, and T.
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As an example, we shall now derive Table (125) of Chapter II, § I, which

gives the direction cosines of the system z_l _ fixed to the base relative to

the system }I]_whose orientation is determined by the moving object.

It is easily seen that if the initial position of the trihedron abc coincides

with the coordinate system zlylzl, then, according to Figures 26 and 27, this

trihedron is brought into position }_]_by the following consecutive rotations:

i) through an angle _-_--{)labout the axis b(yl);

2) through an angle a_-_, about the axis a(}l);

3) through an angle ]"(-- (T -_ _) in the notation of Chapter If, § I) about

the axis c (_i).

This is a displacement of the second kind, and (187) is applicable.

Replacing in this table x, y, and z by z I, Yl, and zI respectively, and

g, _, and T by _l,--_l and _(-r-31-_) respectively leads to (125).

Tables (164) and (169), derived in Chapter II, § 2, can be similarly

obtained. The first by using the table of the first kind (Table (182)), the

second by using the table of the second kind (Table (187)). In both cases

the notation of the axes fixed to the rocket body must be changed.

The auxiliary tables (180) and (185) can also be used if the displace-

ment of the trihedron is limited to two finite rotations about any two of its

axes. This was the case (see Chapter I, § I) of the tilting of the gimbal

rings of two systems the pivot axes of whose outer rings are mutually per-

pendicular. Table (3) is identical (except for the notation used) with (185),

and Table (6) with (180).

§ 4. Nonholonomic motions of

gyroscopic systems

The motions of gyroscopic systems, treated in the precession theory of

gyroscopes, can in many cases be considered to occur as if under the influ-

ence of nonholonomic constraints.

The s im plest exam ple is the motion of a double -gyro frame (Figure 51 ) in

the absence of friction in the bearings of the gyro housings. In this case,

the projection of the frame's own angular velocity _ on the frame pivot

axis (z-axis) is zero, irrespective of the motion of the base (ship deck,

plane, etc.) on which the frame bearings are mounted (cf. Chapter IV, § 5):

wa _--_0. (188)

Another example is the gyro acted upon by correction forces. A moment

maintaining the top axis in a position perpendicular to the outer-ring plane

_z is applied to the z--axis by means of a motor M(Figure 52). When these

moments are sufficiently large, the top axis is practically perpendicular

even when the base is in motion. In the absence of friction in the bearings

of the gyro housing, (188) is valid here also, Q_being now the angular veloc-

ity of the outer gimbal ring.

The precession theory of gyroscopes neglects the so-called inertial terms

in the equations of motion of gyroscopic systems (cf. Chapter IV, § I).

These terms contain the equatorial moments of inertia of the tops, and also

the moments of inertia of the gimbal rings, housings, and other parts of the

gyroscopic system connected with them. The inertial terms are responsible
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for the so-called nutational oscillations of a gyroscopic system, which

have relatively high frequencies. These oscillations are usually damped

rapidly due to the presence of external and internal resistance forces in

the system. These last are also often neglected in the equations of motion.

Neglecting inertial terms, the equations of a gyroscopic system contain

only the coordinates of the system and their time derivatives. They have,

therefore, the same form as the equations of nonholonomic constraints,

depending in the general case on time (nonrheonomic equations).

2

FIGURE 51 FIGURE 52

The motion of a gyroscopic system described by the equations of the

(elementary) precession theory of gyroscopes, i.e., without taking into
account the inertial terms, is thus in a certain sense a nonholonomic

motion whose number of constraints is equal to the number of coordinates.

This approach is useful in many cases arising during the study of cer-

tain peculiarities in the behavior of gyroscopic systems mounted on mov-

ing bases. In the above example of a gyroscopic frame the equations of

the precession theory can be separated into two independent equations. The

first of them -- equation (188) -- has the classical form of the equation of

a nonholonomic constraint. The second equation (cf. Chapter IV, § 5) de-

fines the law of the rotations of the housings relative to the frame under

the action of external forces. This equation does not have so clear a form

of a nonholonomic constraint. When the friction in the bearings of the

housings is taken into account, however, this method is sometimes very

advantageous.

The motion of the gyro-system base is responsible for the appearance

in the equations of terms depending explicitly on time. Any motion of the

base thus entails a variation in the orientation of the gyros of the system.

If the base returns to its initial position in the course of its motion, the

gyros and gimbal rings will not necessarily return to their initial positions

(because of the nonholonomic pattern of the motion). This problem is of

great practical importance and will be discussed below.

The gyroscopic frame, and the gyro acted upon by correction forces,

can, because of (188), be used for the stabilization of a fixed direction in
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• thehorizontalplane,i.e., serveasgyroazimuth(directionalgyro). If the
frame pivotaxis is fixedin a vertical direction, theframewill havean
apparentrotationreltativeto thesurfaceof theEarth. Theangularvelocity
of this rotationis equalandoppositeto thevertical componentof theangular
velocityof the Earth.

In fact, if the angle between the top axis and the north-south line is de-

noted by x {Figure 53), the projection of the absolute angular velocity of

the gyroscopic frame on the local vertical is equal to

dz
% _--_-- -_--_- Usln ?, (189)

where U is the angular velocity of the Earth, and ?, the local latitude.

Inserting (188) into (189) yields

- "" Usin % (190)

If viewed from above, the frame will rotate clockwise in the northern

hemisphere.

This rotation can be prevented by applying a suitable moment to the

axis of one of the frame's gyro housings. For instance, one resulting

from the static unbalance of the gyros, in order to

cause a counterclockwise precession of the frame

N about its pivot axis. Expressed technically the frame
k , /y is stabilized in azimuth.

The situation is different if the frame's pivot axis

__Z deviates from its vertical direction because of the

motion of the base on which the frame bearings are
mounted.

If the pivot axis returns to its initial position as a

result of the motion of the base, the frame's orienta-

/_ tion at the end of the motion will, in the general case,

differ from its orientation at the beginning; in other

s words, the stabilization in azimuth will be lost.

Therefore, a perfect stabilization of the frame pivot

FIGURE 53 axis in the vertical is necessary for an accurate stabi-
lization in azimuth.

Consider an arbitrary motion of the trihedron z°[_ fixed to the frame

base in such a way that the _-axis coincides with the z-axis of the gyro-

scopic frame (Figure 54).

The translatory motions of the trihedron _[/0_ have no influence on what

follows. It can therefore be assumed that the s°-axis of the trihedron pas-

ses permanently through some point O, and that the trihedron apex M moves

on a stationary sphere of radius R and center O. The direction of the _-axis

or, which is the same, the position of the point Mon the sphere, can be de-

fined by the angles _ and ?, as the longitude and latitude of a point on the

Earth's sphere. For this, the position of a great circle of the sphere --
the Equator--and of some initial direction OE in its plane must be fixed re-
lative to a Newtonian reference frame.

The position of the trihedron x°U°_ in space is fully determined except

for a translation by specifying, in addition to the angles _ and ?, also the

angle • formed by the _-axis with the tangent to the geographic parallel Mp

of the point at which the trihedron apex Mis located.

69



A variation of the angle _ corresponds to the rotation of the trihedron

z_@ about the S-axis perpendicular to the equatorial plane (Figure 54).

This axis forms an angle -a_--? with the @-axis.

A variation of the angle ? corresponds to a rotation of the trihedron

about J_pperpendicular to the @-axis. Finally, u variation of the angle

corresponds to a rotation of the trihedron about the z°-axis itself. The

projection of the angular velocity of the trihedron z°_ on its @-axis is

therefore
d# . --

ms, _-_ _r_ SlO ?-i-_" • (191)

We now fix a trihedron zyZ to the gyroscopic frame whose z-axis coincides with

the frame pivot axis, and therefore with the z°-axis. The position of the

trihedron zyz relative to the trihedron x°l/°@ can be defined by the angle X

P

FIGURE 54

between the axes x ° and z (Figure 55). The relative angular velocity of

the trihedron zyz relative to the trihedron z°y°z ° is equal to the time deriv-

ative of the angle X and is directed along the z-axis. It follows that the

projection of the absolute angular velocity of the frame on its z-axis is, in

accordance with the theorems of kinematics,

dz dz . d_, . . k
w,-_-_- nt-w_,=_ -i" _-sla ?-[--_-. (192)

The motion of the gyroscopic frame is such that %---0 (see (188)). It
follows that

&l d# . d,

whence

dX --- ----d_-- d_ sin ?. (194)

During the motion of the trihedron z_ (i.e., during the variation of

the angles _, ?, and _) the angle X equals

_v

(195)

%%

where t0, ?0_ %are the values of the angles ,, _, and - at the initial position

of the trihedron. The initial value of the angle }_ is taken as zero.
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The value of the right-hand side of (195) depends on the curve described

on the sphere by the apex Mduring the motion of the trihedron.

Let the trihedron @//°z°return to its initial position. Equation (195) then
becomes

Z----_sin ?d_o (196)

in which the integration is along the closed curve traced on the sphere by

the trihedron apex M.

In the general case integral (196) is not zero. The frame is thus oriented

differently in space at the end of its motion than at the beginning, in spite of

the fact that the s-axis itself has returned to its initial position and that the

projection of the absolute angular velocity of the frame on this axis was
constantly equal to zero.

z_z P

M

xy

yo

FIGURE 55 FIGURE 56

Consider in particular the motion of the apex of the trihedron _y0_ along

the closed curve formed by two arcs of the parallels ABand CD and two arcs

of the meridians BC and DA(Figure 56).

The angle _ does not vary during motion along the meridians, and there-

fore d_--_0. The angle ? does not vary during motion along the parallels,
and therefore

sir.?aS = j"sir.? aS + j"sir.? a $=(sir.?,- sir,?_ ($,-$0, (1 97 )
GJ

where ?land ?zare the latitudes of points A and C, and _land _s their longi-
tudes.

In this case, therefore.

Z = (sin ?t--sin ?s) ($,-- $1)- (198)

In particular, if the trihedron apex traces consecutively three arcs of

great circles forming an octant, then

?,=0.
and therefore

i.e., the frame is rotated through 90°; this can also be seen directly.

The right-hand side of (198) represents (as known from the formulas
of elementary geometry) the ratio of the area bounded by ABCD to the
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square of the sphere radius R; in other words, it represents the solid

angle _ subtended by this area. Therefore

X-_Q. (199)

This formula remains valid for any closed curve on the sphere. Equa-

tion (199} can be proved using Green's formula

Inserting here

d oO oP (200)

P=sia?, O_---O, z_._, y_y, (201)

and taking (196) into account, we obtain

x=- I (202)
The expression

lV_ cos ? d_ ti? (203)

represents a surface element of the sphere bounded by two infinitely close

parallels and two infinitely close meridians. Therefore

][ _ _-T2, (204)

where S is the part of the sphere's surface bounded by the closed curve.

Equation (204) becomes (199) by the definition of the solid angle.

It is thus seen that the angle of rotation of the gyroscopic frame about

its pivot axis is equal in value to the solid angle described by the pivot axis

in the course of the motion of its base. Therefore the ship's gyroazimuth

axis must be stabilized relative to the vertical, since otherwise the ship's

roll would lead to additional solid angles being described during the motion

by the axis, and therefore to large deviations of the instrument in azimuth*.

A behavior similar to that of the frame is shown by the simple flywheel

mounted on a moving shaft in the absence of bearing friction. The initial

angular velocity of the flywheel (more exactly its projection on the flywheel

axis) must then be zero.

Another case of a nonholonomic constraint in the motion of a rigid body

will now be treated by a somewhat different method. Let the rigid body

move in such a manner that

,,t _O. (205)

where wc is the projection of the instantaneous angular velocity of the body
on some fixed direction.

Consider two trihedrons: one, }_l_, in space, the other, zyz, fixedtothe

body. The relative position of these trihedrons can be determined by means

of the three anglesa, _, and Tinthe same way as was done in §3 of this

chapter (p. 63) for displacements of the first kind.

Determine the projections of the angular velocity of the trihedron zys on

the axes |, 11, and E. The vector of angular velocity is equalto the geometric

sum of the angular velocities of the trihedron zyt each one of the angles tt, [3,

or T being varied separately while the other two are kept constant.

* This result, which has a large number of applications, is closely linked with the theory of the parallel
transfer of a vector in Riemannian geometry.
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It is easilyseen(Figure47)thatanincreaseof the angle-f (theother
anglesbeingkeptconstant)correspondsto a clockwiserotation*aboutthe
axis _(¢z)ofthetrihedronxy:, togetherwith thetrihedron |zTh_andz'_$'re-
lative to thetrihedronE_; anincreaseof theanglep corresponds to a
clockwise rotation of the trihedron xVz, together with the trihedron _d_]g,

about the axis %(_) (Figure 46); an increase of the angle m corresponds to

a clockwise rotation of the trihedron xyz about the axis x(:d)(Figure 45).

[In all cases viewed from the positive directions of the axes of rotation.]
$a

It follows that the angular velocity di" is directed toward the negative
ap d7

direction of the _:-axis, the angular velocities -_-and _- toward the negative

directions of the axes _hand _zrespectively. The following expressions are

obtained for the projection of the angular velocity _ on the axes |,_, and

by using the direction cosines given in (181) and (182):

d_ cosI) ap .cut_ _ _- cos"r_ _ smT;

aa .... dp
w_ = _ _- L--cos p s,n T) _ _ cos T;

da dT
®c=--_sin p-- _/'.

(206)

The position of the x-axis is determined, in accordance with (182), by

the two angles _ and T. The angle _, defines the relative position of tri-
hedrons _z and x'y'_ (Figure 45), the axes x and x'of which coincide.

If the x-axis returns to its initial position in the course of the body's

motion, the angles _ and T will likewise assume their initial values. The

angle ,, will, however, in the general case not assume its initial value if

a nonholonomic constraint, _c_0, is imposed on the body. The position

of the axes y and z will therefore differ from their initial position. In fact,

it follows from the third equation (206) that in this case

d7
dg --_-- _ (207)

and therefore

sm"_" ' (208)

where the integration is performed along a closed curve in the _T plane,
and the initial value of g is taken as zero.

A geometric interpretation can be given to (208), as was done for (196).

Based on similar considerations, the time integral of the projection of

the ship's angular velocity on the vertical,

I

--I o)¢dt, (209)
o

is not the angle of yaw of the shzp. In fact, the angle ? may differ from

zero in spite of the fact that the ship has after a certain time t I returned to

its initial course, so that the actual variation of the angle of yaw 1[ is zero.

* In Chapter II, § 3 the trihedron zys was considered as fixed; as a result, an increase of any of the 7,n,or p
corresponded to a counterclockwise rotation about the corresponding axis. In this section the trihedron |_1_
is fixed, and therefore inc:eases of these angles correspond to clockwise rotations in Figures 45, 46, and 47.
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It is seen from the third equation of (206) that

tl

o

i.e., ?_0 in the general case.

(210)

74



ChapterIII

PHENOMENACONNECTEDWITHTHEELASTICITY
OFGYRO-SYSTEMELEMENTS

§1. Elasticdeformationsof thegyrorotor under
the influenceof centrifugalforces

Theaccuracyof gyroscopicinstrumentssuchasthedirectionalgyro
dependsto aconsiderableextentonthe accuratelocationof therotor's
centerof gravity relativeto thegeometriccenterof thegimbalsystem.
A shift of theorder of one_ in thepositionof thecenterof gravity causes,
asa rule, a deviationof thegyroof thesameorderasthespecifiedtoler-
anceof the instrumenttsaccuracy.

Take, for instance,a rotor of weightP= 1200 g and angular momentum

H = 15,000 gcm sec; the angular velocity of precession of the directional

gyro (Figure 57) caused by a displacement a_| _ of the center of gravity
will then be

da Pa /200. O.O00l .......
_i m_ _-.._ 15000 _u.uuuutR_ sec -z,

which is equivalent to 1.65 minutes of an arc per minute of time.

On the other hand, as will be shown below, the elastic deformations of a

conventional rotor under the action of centrifugal forces cause a displace-

ment of the center of gravity of the order of one hundredth of a millimeter.

FIGURE 57 FIGURE 58

This can lead to unacceptable errors in the indications of the gyroscopic

instruments during the variation of the rotational speed of the rotor (this

variation occurs in many gyroscopic designs).
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The rotor of most gyros can be represented schematically by a rela-

tively thin-walled cup revolving about its axis (Figure 58). The cylindrical

part of the cup tends to expand under the action of the centrifugal forces.

This expansion is prevented by the rotor bottom: the cylindrical part bends,

the bottom bulges inward, and, as a result the center of gravity of the rotor

is displaced along its axis (Figure 59).

The centrifugal forces acting on the rotor are considerable: the centri-

fugal force acting on a mass of 1 g situated on the rotor rim at a distance

of 45mm from the axis of rotation equals 41.3 kg at 30,000 rpm.

The elastic deformations of the cylindrical part of the cup will be de-

termined approximately by the formulas of the axially-symmetrical bend-

ing of a cylindrical shell, and those of its bottom by the formulas of bend-

ing of a plate or disk of constant thickness, neglecting the influence on

bending of the tensile stresses in the median plane of the disk.

FIGURE 59 FIGURE 60

Let Rbe the mean radius of the cylindrical shell. Were it not restrained

at the bottom, this radius would increase under the action of the centrifugal

forces by the magnitude*

_-- lu2Ra ( 21 1)
__.---_--.

The influence on the rotor of the pressure of the squirrel cage, also sub-

jected to deformation by the centrifugal forces, is neglected. If necessary,

it can be allowed for by adjusting the value of T in (211).

On the other hand, as follows from the formulas of the applied theory

of elasticity, the radius Rof a disk of constant thickness increases at the

same angular velocity w by the smaller magnitude

_, __ (! -- ",,)"Iu"Ra
-- _r£ " (212)

In formulas (211) and (21 2) we have used the following notation:

T, specific weight of the material of the rotor;

g, gravitational acceleration;

E, modulus of elasticity;

v, Poisson's ratio.

* Timoshenko, S.P. Soprotivlenie materialov (Strength of Materials). Vol. II. -- GITTL0 Moskva-

Leningrad. 1946; Teoriya uprugosti (Theory of Elasticity).- GTTI, Moskva-Leningrad. 1934.
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Since (see Figure 60)

8>V, (213)

the right-hand edge of the shell undergoes, because of the rigid connection

between the cylindrical shell and the bottom, an additional deflection w]
toward the axis of symmetry; at the same time, the disk radius increases

by the additional magnitude

u_---8--8'--w I. (214)

At the disk edge there appear distributed tensile stresses of intensity

Elg
Q'= l--v _ , (215)

where h'is the thickness of the disk (the cup bottom).

The right-hand edge of the shell also undergoes an angular displacement

0] The rigid connection between disk and shell cause an equal angular dis-

placement of the disk edge. As a result, there appears a distributed bend-

ing moment at the edge of the disk, given by*

where

The deflection of the disk

M'_ _Ol, (216)

D, Eh"3
lZ (l -- _) "

RO1
--'-y , (217)

since the median surface of the disk bends along the surface of a sphere.

The magnitude ]is the displacement of the gyro rotor's center of gravity.

The additional deflection _ of the cylindrical shell satisfies the follow-

ing differential equation of the type of the equation of an elastically sup-
ported beam :

D d,W Eh
_ +_w=0, (218)

where

D _ Eh'
12(I--_l) •

The bending moment and the shearing force become zero at the left

edge of the shell, so that for z_O,

d_
d2w _---0, (219)dz----i _-_---0.

The integral of (218) satisfying the boundary conditions (219) is"

i
w_ A ch z cos =-_- B-_(ch x sin z-_-sh x cos z), (220)

where

==_z; _=__; (221)
V R_

,4 and B are constants which have to be determined.

The bending moment M and the shearing forces Q at the right end of the

• Timoshenko, S.P. Plastinki i obolochki (Theory of Plates and Shells).-- Moskva-Leningrad, Gostekhizdat.

1948.
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cylindrical shell can be obtained from

M _ --_SD d2w as__-, Q-_--_SD _- (222)

where
z -- _l,

and | is the length of the cylindrical shell.

By Newton's law of action and reaction, the values of M and Q are re-

spectively equal to the corresponding values of Mtand Q', for the disk. The

following two equations with two unknowns A and B are obtained by equating

(215) and (216) to equations (222) and then inserting (214) and (220)

--_'D [--A 2 sh _l sin El -- B (ch _l sin _l -- sh _l cos _1)] "-

--(t+--_D'_[--A(ch_lsin_l--sh_Icos_l)-_-Bch_lcos_l], (223)

--_SD [--A 2 (oh _l sin _l -_ sh _l cos _l) -- B 2 sh _l sin _l] --"

-__ [_--r--. chplcospl--

--B½(ch_lsin_l-_-sh_lcos_l)]. (224)

Since

o,=- - sin  l--sh cos t --Bch cos 1225)

the displacement of the center of gravity of the rotor can now be found

from (217).

Numerical example. Let

R =4.5 cm, /,= 1.2 cm, N =0.4 cm, T =0.0078 kg/cm 3, l=3 cm,

m=3000 sec -1, _=0.3, .E= 2100000 kg/cm 2.

It then follows that

_--_-_0.003tt cm; _'----_ 11 -- v) _w2Rs-- 0.000544 cm;_8

___]__1:_)_____0.553cm -1" _l--|.660;-- ¥ Bth_

E_
D-----_ = 332 000 kucm;

Eh,_
__2/__ 3550 kg;D' _ _._. 12 300 kgcm;

Eh' -_-- 267000 kgcm -2.
(t -- _) B

Equations (223) and (224) become

---0.306. 332 000 (--5.04A -- 2.93B) _

3550.0.553 (--2.93A -- 0.243B),

_0.t69t • 332 000 (--4.97A -- 5.04B)---

-_--267 000 (0.00257 _t_ 0.243A -- t.243B).
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Their solution yields

A =--0.000802; B-- 0.001396.

Inserting these values in (225) and the result in (217), gives

9,=0.001488. ]= _/i_s_---0.00335cm_---33 p.

§ 2. Deformation of the gyro housing

In complex gyroscopic instruments such as the gyroazimuthhorizon, the

gimbals and mechanisms are usually mounted on the walls and bottom of

the housing. The housing must therefore be sufficiently rigid to avoid seiz-

ing due to misalignment.

The danger of misalignment is particularly severe when the housing is

mounted on the ship's deck by means of four bolts (Figure 61). A gap of
width _ is formed between one foot and the deck because of unavoidable er-

rors in the manufacture of the housing base; this gap is frequently closed

by strongly tightening the corresponding bolt and the bolt diagonally op-

posite; as a result the housing becomes distorted (Figure 62).

FIGURE 61 FIGURE 62

To find the deformation of the housing and the permissible width of this

gap, a model of the housing consisting of four walls and a bottom of constant

thickness, similar to a box without lid, will be used. This three-dimen-

sional structure is subjected to the action of four concentrated forces Pact-

ing parallel to the housing center line on the lower corners (Figure 63).

It is evident that if the tensile stresses in the walls and bottom are neg-

lected, the housing edges AA', .BB', C_, DD', AB, BC, CD, and .DA can be as-

sumed to remain straight, the trihedrons with apexes at points..4, B, C,

and D remaining orthogonal.
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This means that the walls and bottom, which will be considered to be

elastic plates, are subjected to pure torsion, by four equal and parallel

concentrated forces Q applied to the corners of a rectangular plate

(Figure 64).

8'

A'

"" ir'4"-_-" c

.- zi]-,(-
% b.)',

FIGURE 63

The plate deflection for pure torsion;:-" is

OzV

w_2(i_) o • (226)

The deflection w is measured from the plane xy tangent to the plate at its
center.

°z

Q B AOL, _

0

FIGURE 64 FIGURE 65

* Timoshenko, S, P. Plastinki i obolochki (Theory of Plates and Shel/s). -- Moskva-Leningrad, Gostekhizdat.
1948.
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' We introduce a coordinate system zyz with origin at the center of the hous-

ing bottom (Figure 65), z-axis directed along the housing center line, and

z- and //-axes parallel to the undeformed bottom edges. We denote by _ v,

and _ the displacements of the upper corner (point A_ in the directions of
the axes z, //, and z respectively.

From the assumptions on the absence of tensile stresses in the plates

it follows that the displacements of point A of the housing bottom will be

respectively

ua_--_0 , va_O , wA--w , (227)

and those of points B and D

um_um_O, vj=vj_O, wm_lo3.-_-_--w. (228)

The following relationships ot orthogonality follow from the perpendicu-

larity of AA' to AB and AD:

(A A').(AB). -_ (AA% (AB), -_-(A A_. (AB). = O.

(AA'), (AD). .-]- (AA'), (AD b + (AAg, (AD),-- 0, (229}

or U. a--_ v • 0 --2W, e--O,

u. Ont-v- b--2w- 0------0. (230)

where a, b, and ¢ are the lengths of the edges All. AD, and AA t.

Equations (230) yield

u_-_W, p---$-W. (231)

The potential energy of deformation of the plate ABCD forming the hous-

ing bottom is

=_ 40o = t6 (l - ,) o_,*U. • b (23 2)

The potential energies of deformation of plates ABA'B _ and ADA'IT are,

as is easily seen,

t6 (i--_)D(_ ,,)2
U,'--

40

U.----

Inserting the expressions for u and v from (231) yields the following

formula for the total potential energy of the housing:

U_-Ue'J-2Ulnu2U2=16lt--v)mb Do_(| l')D bct'_ D-_'e/ (234)

It is known from the theory of elasticity that the potential energy of an

elastic system equals half the work done by the external forces along the

displacements of the system, i.e.,

The displacement w is obtained by equating (234} and (235}:
P

bed

(235)

(236)
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Theforces acting at the housing corners are shown in Figure 66.

The following formulas can be obtained from (226) and (231) and the

conditions of equilibrium of the housing wails and bottom:

X=Y=_-; Z'=2_Y; Z"=2.-_X;
(237)

Z=Z'4-Z"-----P--Q;Q---- a(i_.)Do-- w.

Formula (236) could be derived from these equations without using the

theorem of the elastic energy.

.n

5 t c

")
|jP_

%%t

z>

¢,¥

FIGURE 66

Numerical example. Consider a cube-shaped housing with edges

500 mm long and duraluminum walls (E = 750,000 kg/cm 2 , v= 0.3) 10 mm

thick. A deflection _--2w = 1 mm is then caused by a tensile force of 40 kg

acting on the bolt.

§ 3. The rigidity of the gimbal rings

The gimbal rings of gyroscopic systems, such as the gyroazimuthhorizon,

are subjected to considerable loads. At certain instants they carry the en-

tire load due to the rotation of a number of elements linked kinematically

with the stabilized parts of the device. The elastic deformations of the gim-

bal rings may cause erroneous readings of the instruments, or even judder

due to friction (cf. § 4 of this chapter).

This section deals with the elastic deformation of gimbal rings and bows

for different loading schemes.

1. A ring resting freely on two supports and acted upon by two forces

(Figure 67). The deflection ] at the points of application of each of the
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forces and the rotation 8 of the section at the support are respectively

We denote by B the flexural rigidity of the ring or bow, and by C the tor-

sional rigidity.

2. If the pivots are prevented from deflections in the vertical plane

(Figure 68), 0--=_0, and the deflection becomes

i.=p_,(___+o.____,). (_3_
This case does not occur in practice because of the deformation of the

bearings and the unavoidable clearances.

J

FIGURE 6_/ FIGURE 68

3. A ring resting freely on two supports and acted upon by a couple

(Figure 69); an equilibrating torque acts on one of the pivots. The line

connecting the points of application of the forces rotates through the angle

0.=_(_-_ +°_-_). _,0,
relative to the pivot axis. The unloaded pivot rotates through the angle

relative to the loaded pivot.

4. The case where one force only acts on the ring (Figure 70) can be

obtained from cases 1 and 3. If the section at which the equilibrating torque

is applied is considered as rigidly fixed, the deflection ]a at the point of ap-

plication of the force P is

The deflection Is of the opposite point is less:

_,=,,_(___o_+_). (243)
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The rotation 8 of one pivot relative to the other is

_,0 +0--_ Ft{" _ _ (244)

5. If the ring is twisted by opposing torques applied to the pivots

(Figure 71). the angle of twist ? of the ring is

+
6. The bow is loaded in the center (Figure 72) by a concentrated force

Pand an equilibrating torque acting at one of the pivots. The deflection w

FIGURE 69 FIGURE 70

at the point of application of the force is

One of the pivots rotates relative to the other through the angle

_ = 0.785, P_ (_ .-_ _). (247}

Numerical example. Consider a duraluminum bow (E _=

-- 750,000 kg/cm _, v = 0.25) of radius //= 250 mm loaded by a force P=

= 10.0 kg according to scheme 6 (Figure 72). The dimensions of the bow

section are given in Figure 73.
In this case*

B-_--E (.'-i- I) (b'--_- tp-- (a'--|) (/f --t)S
12

_ 750000 . 25.7 _ J 9 270000 kgcm2;

C_--.G_ _-300000 • 3|,0 _-- 9 300.000 kgcm 2.

From (246) we obtain

w_--0.0|33 cm_--0.t33 mm.

* Timoshenko, S.P. $oprotivlenie materialov (Strength of Materials). Part II.-- GITTL. Moskva-

Leningrad. 1946.
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If the bow section has the shape shown in Figure 74, then

B1=99270000 kgcm 2, Cl_G2a'+2b'--e_s_3

_---300000 • 0.645--" i93 500 kgcm 2.

From (246),

w I _ 0.38tcm= 3.8i mm.

In this case the deflection is almost 28 times that of the bow in the previ-

ous example.

FIGURE 71 FIGURE 72

The corresponding values of the angle _ are, according to (247):

_ -----0.000783 (--_ 3') and _I_0.0257(-_--|°28_.

An analysis of fo_'mulas (238)--(247) shows that the torsional rigidity

has a considerable influence on the deformation of the rings. Accordingly,

the so-called open (e.g., trough-shaped) profiles should not be used in

'_i---r f_" -- '_

,,,, r1 o,444,'I
i,_u______'_

' q "-:t
FIGURE: 73 FIGURE 74

gimbal rings; closed profiles should be used instead. Their sections need

not be round. It appears that single openings in the walls of closed profiles

do not substantially :reduce the torsional rigidity, and can therefore be per-

mitted. Unfortunately, the theoretical study of this very important problem

is very difficult, while experimental results are not yet available.

85



§ 4. Discontinuous motion of insufficiently •

rigid kinematic transmissions

Insufficient rigidity of kinematic chains connecting elements of gyro-

scopic instruments and control systems causes not only inaccurate repeat-

ing of the required magnitudes, but also loss of transmission smoothness.

If, for instance, the gimbal ring rotates relative to the instrument housing

sufficiently slowly and uniformly about its axis the rotor of a tachomachine

linked to the gimbal ring by a relatively long kinematic chain may move

discontinuously.

This phenomenon is known as frictional judder. It results from

the laws of friction in the kinematic transmissions, in particular in the link

having the greatest mass or moment of inertia. In the case considered this

link is the rotor of the tachomachine.

The judder disappears with increasing rotational speed of the gimbal ring

or increased rigidity of the transmission between the ring and the rotor.

Many attempts have been made to explain this phenomenon, each attribut-

ing different influences to the transmission parameters and the frictional

forces.

The theory of judder evolved in 1944 by the author in collaboration with

I. V. Kragel'skii is given below. This theory is based on the existence of a

relationship between the initial frictional force F and the duration t of the

contact between the two bodies, all other conditions being equal (Figure 75).

¢

FIGURE 75

This relationship can, on the strength of theoretical considerations, be

represented fairly accurately by the formula

F-_-F (t)_- F.-- (F_-- Fo)_"-_, (248)

where Fm is the initial frictional force for an infinitely long duration of

contact between the bodies;

F 0, the frictional force for a very short duration of contact;

Q, the coefficient depending on the properties of the two bodies, the

condition of their surfaces, lubrication, etc.

Obviously

F_' o. (249)
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We assume for the sake of simplicity that the force of dynamic friction

is also equal to F e and does not depend on the velocity with which one body
slides on the other.

#

U

FIGURE 76

The following scheme is useful for analyzing the phenomenon of dis-

continuous motion or judder (Figure 76). A body A, linked to a fixed ob-
ject by means of a spring C of rate E, lies on the rough surface B. When

the surface moves it carries the body with it, pulling on the spring _ith
a force

P--_ Ez, (250)

where z is the displacement of the body from the position at which no force
acts on the spring.

The body Awill move together with the surface Buntil the force of the

spring C acting on it becomes equal to the starting-friction force for the
specified duration of contact between the body and the surface. The dis-

placement z 0 at which the body begins to slide on the surface, when contact
is sufficiently long, is given by

Eze _---F_ (251)

This sliding is the result of two forces acting on the body: the contact force
of sliding friction F e in the direction of motion of the surface, and the elas-

tic force of the spring P, expressed by (250). The subsequent motion of the
body under the action of these two forces will be harmonic about the equi-

librium position z--a(Figure 77), which is determined by the relationship

Ea_F e. (252)

When sliding begins, the body Ahas a displacement z 0 and a velocity v.
It will therefore continue to move in the same direction as the surface

initially, gradually losing speed and lagging behind it. Later the velocity

2a'A"_L _,] _

' "i ;;
" I/

"i/I 
k,_

FIGURE 77

becomes zero and changes sign; the body starts moving in the opposite
direction with a velocity gradually increasing in absolute value. The ab-

solute value of the velocity attains a maximum at x--_ a, at which the frictional
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force is equal to the elastic force of the spring, and then begins to de-

crease until the velocity again becomes zero and changes sign; the body

starts moving with increasing speed in the direction of motion of the sur-

face. At z_z I the body's velocity becomes equal to that of the surface v.

Since the body's motion is harmonic, the displacements corresponding to

the same value of v are symmetrical about the equilibrium position. There-

fore

zo'F zl (253)
2 --_a,

whence
zl_2a--z e. (254)

It is easily seen that the body ceases sliding on the surface B after its

velocity has reached the value v, and that its further motion (until sliding

sets in again) is in unison with the surface. In fact, the body cannot over-
take the surface, since this would mean that the frictional force changes

sign and that the force acting on the body in the direction of motion of the

surface is

__ Kz, __ Fo = -- K (2a -- zo) -- Fo = F_ -- 3 Fo. (255)

This expression is, however, negative if F_<3F o, so that our assumption

is incorrect.

We denote by t 2 the time during which the body .4 moves together with

the surface B after sliding has ceased, and by z 2 the displacement of the

body at the instant sliding recommences. The following equation will obvi-

ously be satisfied:
z2--_- zl 7t- vt,. (256)

On the other hand, sliding recommences at the instant the spring force

Kx 2 is equal to the starting-friction force, whose value is determined by

the time t z during which the point A is in contact with the surface B without

sliding. Therefore :

Kz,_- K (z,-_-vt,)= F (t,), (257)

from which t,and zscan be determined if the function F(t) is known.

i w _W%_V%%--['_ 8
"i..

FIGURE 78

The renewed motion will similarly be harmonic and will end at the in-

stant the velocity of the body becomes again equal to that of the surface.

The corresponding value of the displacement x_ is then

z3--___2a__ x_, (258)

which is similar to (254).

The body A will then again move together with the surface B for a time t4

at a velocity v until sliding occurs again at x=x 4. The time t4 can be found

by solving an equation similar to (257), i.e.,

Kz t -_- K (x_ -1- vt_) -_ F (Q). (259)

This sliding is again followed by a uniform motion, followed by a third

period of sliding etc.
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If thedurations to, t,, t_ of joint motion of the body A and the surface B

without relative sliding tend toward the nonzero limit t* then the harmonic

motion of the body ,4 (Figure 76) becomes a constant-amplitude periodic

oscillation, usually of the relaxation type (which is quite different from a
harmonic oscillation}.

We now invert this scheme, and let the end of spring C move at constant

velocity v, while the surface B remains stationary (Figure 78). The above

analysis remains valid also in this case. After a time t o the body A will

start moving with a succession of stops of respective durations tt, t4, ...,

in other words, the motion will be discontinuous.

To find the conditions under which discontinuous motion or judder occurs

during friction, consider the above scheme (Figure 76) and denote byx*the

limit of the sequence of the displacements x0, z2, z4, .... at which sliding

starts (Figure 77). In the limit the difference z*--a represents half the

distance traveled by the body together with the surface without sliding.

Therefore

x*--a= T , (260)

whence
-- v$*

z*---at-"f-. (261)

On the other hand, sliding starts at the instant at which the spring force

becomes equal to the starting-friction force for the duration t* of contact

without sliding between the body and the surface:

Kz* = F(t*). (262)

Inserting (261) yields

K(a "-_- --_) = F(t*). (263}

The value $* can be found from this equation.

Figure 79 represents the starting-friction force F(t) as a function of the

duration t of contacl without sliding between body and surface. It also shows

the spring force P(t)

P = K (a "3u-_-) , (264}

at the end of the time t during which the body A remains stationary relative

to the moving surface B.

The two curves have a common point at t--_0, since

Ka_Fe_F(O ). (265)

This will be the only common point if the slope of the curve F= F(t) at

t----0is less than the slope of the straight line (264). There are then no
relaxation oscillations.

If the starting-friction force is given by (248), then

F (0)= a (F_0-- F0). (266)

It follows that for no judder the inequality

a lF. -- Fo)< -_--, (2671

must be satisfied. This will always be the case if the spring stiffness Kor

the velocity v is sufficiently large.
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If inequality (267) is not satisfied (this may happen with a soft spring),

the curves in Figure 79 have another intersection point at t_t* In this

case judder is possible. It can be shown that this motion of body A will be

stable. The limiting value of _ at which inequality (267} becomes an equal-

ity will be denoted by va.
Consider again the curve F_..-_-F(t) of the starting-friction force as a func-

tion of the duration of contact without sliding between the body and the sur-

face (Figure 80).

/
F,P

# t*

FIGURE 79 FIGURE 80

Draw on the same figure and to the same scale the curve P._P(t) of the

spring force as a function of duration t of joint motion without sliding.

This curve will be the straight line

P=O-}-Kt_, (268)

where Q is the spring force at the beginning of the motion in unison. The

abscissa of the point Mat which the curves F_F{t)and P_P(t)intersect

gives the instant at which sliding starts; its ordinate gives the correspond-

ing value of the displacement z of body A, multiplied by the spring rate K.

Mark off a point S symmetrical to Mabout the line

F_Fo, (269)

parallel to the abscissa; also mark off on the ordinate a point (_ having the

same ordinate as point S. It is then easy to see that the ordinate of pointQ'

(or S) represents the value of the spring force at the end of sliding and there-

fore at the start of a new period of joint motion of body and surface. The

spring force will then vary according to the law

P=Q'-}- K_t, (270)

represented in Figure 80 by the line Q'M', where M _ is the intersection of

the straight line (270} and the curve F_F(t). The point M t determines the

beginning of renewed sliding. Knowing its position, the points S t and (_

can be found, and plotting can be continued until the sequence M, M', M',...

tends to a limit point M*. The sequence Q_, _,... in its turn determines

a limit point Q*. The points M* and Q* are located on opposite sides of the

line F--F e at equal distances from it.

9O



Markoff ontheordinatea pointQ0(Figure80)locatedat a distanceF 0

from the abscissa. The equation of the line 00M'is

P = F0--_-- _ , (271)

since the slope of the line Qo M* is half the slope of Q'M*.

By inserting (265) into (271) this last equation becomes identical with

(264). The two lines therefore coincide, and the abscissaL*of point M'is

determined by solving equation (263).

To study the problem of the stability of the interrupted motion, assume

that at a certain instant the body ,4 is placed on the surface Bto the left of

the position corresponding to the end of steady sliding (Figure 81). This

corresponds to some point Qlocated on the ordinate below Q*. The spring

force will vary according to (268) as a straight line of slope Kv up to the

intersection with the curve F_F(t) at point M. Sliding starts at this instant.

#

v,pp_) v.v

FIGURE 81 FIGURE 82

The ordinate of point Mis larger than the ordinate of M e, and the dis-

placement of body A from the equilibrium position x--_4 will therefore be

greater at the beginning of sliding than for steady motion.
On the other hand, the ordinate of point M is less than the ordinate of

point Nat which the straight lines (268) and (271) intersect.

Point Nis located at the same distance from the line F-._-F o as point Q,

as can be easily seen from the similarity of the figures. It follows that

point S, symmetrical with point Mrelative to the line F_F o, will be nearer

to this line than point Q. The renewal of joint motion of body and surface

is therefore determined by point _ located between points Q and Q*. It is

seen that the judder amplitude will decrease until a periodic motion is

finally established.

It can be similarly shown that if body A is placed on surface B to the

right of the position corresponding to the end of sliding at steady motion,

the judder amplitude will increase. This case is shown in Figure 82 by

points Qi, Ml, Sl, _l .... etc.

The amplitude of the steady judder is

(272)
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since initially the body's velocity is equal to the velocity v of the surface

and the displacement of the body from the equilibrium position is equal to

the difference z*--a.

The difference z*--a decreases with increasing velocity v until it be-

comes zero for v_-vl(cf, p. 90). Point M'in Figure 80 approaches point

Q0 until both coincide for v_v l, when the interval t'becomes zero.

It is thus seen that to point Q0 (Figure 80) there corresponds a harmonic

motion of body A, which slides on the moving surface Bcontinuously (except

at the instants in which the velocities of the body and surface become equal).

The limiting value of the amplitude is

bl--_vl Vf-_ . (273)

This harmonic motion is unstable if the curve F:F(t) intersects the

straight line (264) at a point M*; it is stable if this straight line lies above

the curve F-_-F(t)and does not intersect it. The proof is similar to the

above.

In addition to this harmonic motion, the body A can also perform an in-

finite number of other harmonic motions of smaller amplitudes. In particu-

lar it can be in equilibrium when displaced to a distance z_a (Figure 76) to

the right of the position at which no spring force acts. In this case it fol-

lows from (265) that the force of dynamic friction F 0 and the spring force P0

equalize each other, i.e.,

pe__.Ka. (274)

This equilibrium is stable. This is, however, different if the force of

dynamic friction depends, even slightly, on the relative velocity of sliding.

Let the frictional force have a regressive characteristic, i.e., the fric-

tional force decreases with increasing relative velocity of sliding. In this

case the equilibrium becomes unstable; if air resistance is neglected, then

for the scheme in Figure 76 either quasi-harmonic oscillations or dis-

continuous motion will occur, depending on the spring rate C and on the

velocity of the surface B,

Regressive friction characteristics are comparatively rare. It follows

that the equilibrium at z---'awill usually be stable; the resistance of the

surrounding medium to the motion of the body also contributes to this sta-

bility.

In conclusion, two stationary states are as a rule possible for the scheme

in Figure 76 when inequality (267) obtains: a state of rest, and discontinu-

ous motion. The transition from the state of rest to the state of discontinu-

ous motion can be performed only by giving to body A a velocity not less than

the velocity v of surface B. The initial joint motion without sliding of body

Aand surface B, leading to the initial sliding, is a particular case of such

an excitation.

The period of the steady motions is the sum of the time during which the

body and surface move in unison and the duration of discontinuous motion:

r=2 "'_-_ +._/_+2% (275)
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"where the value of • is found from the ratio

COS1/ KK__ x* -- 4

y _- =_. (276)

When the velocity preaches its limiting value v-_-p,, z*--'_, and there-
fore

T _ 2. _/"_ . (277)

This case therefore corresponds to harmonic oscillations.

For very small values of v, on the other hand, the first term on the

right-hand side of (275) is decisive, and the oscillations exhibit a relaxa-

tion pattern.

§ 5. Influence of the rigidity of the gyroscopic-system
elements on the frequency of nutations

The elasticity of the elements of the gyros' gimbals and of the various

transmissions linked with the gyros is usually neglected when determining

the natural frequencies of oscillations of the gyroscopic systems. The

frequency of nutations v of the simplest gyroscopic stabilizer (Figure 83)

Y

--C-+---+-----Hi-- -e----_-t_t'-- z

FIGURE 83

is thus determined (Chapter IV, § 1) by the formula

H

"---- (4--(A+J)B ' (278)

where H is the angular momentum of the gyrostabilizer;

A, the moment of inertia of the gyro rotor together with its casing

and the outer gimbal ring, referred to the stabilization axis z;

], the moment of inertia of the mass to be stabilized, referred to

the same axis;

B, the moment of inertia of the gyro rotor together with its casing,

referred to the casing axis y.

Formula (278) is derived under the assumption that the rotor axis forms

a small angle with the perpendicular to the z/? plane, that all system ele-

ments are perfectly rigid bodies, and that there is no friction in the bearings.
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According to (278) an increase in the angular velocity of the rotor

causes a proportional increase in the frequency of nutations _. In fact

H--'Cn, (279)

where C is the moment of inertia of the gyro rotor about its axis of rota-
tion s. Therefore

C_

v(_+-0 a (280)

The agreement between formula (278) and experimental results is in

many cases rather poor. The experimentally determined frequency of

nutations is lower than that given by (280), the discrepancy increasing with

the angular velocity of the rotor. V.I. Kuznetzov found the cause of this

discrepancy in the elasticity of the gyro-system elements.

The influence of the rigidity of the gyroscopic device, shown schemati-

cally in Figure 83, on the natural frequencies of its oscillations is analyzed

below.

In order to simplify the mathematical treatment, it will be assumed that

only the shaft B, connecting the mass to be stabilized with the outer gimbal

ring of the gyro, is elastic. The mass of the shaft itself is neglected. The

equations of motion of the gyroscopic device are in this case:

A d_a N______ _ R,
_, - ,_t--" (_--')'

B _----- O, (281)

I-_----K(,--_),

where the new symbols introduced have the following meaning:

K, rigidity of the shaft B;

a, angle of tilting of the outer gimbal ring about the stabilization axis;

?, angle of tilting of the mass to be stabilized about the same axis;

_, angle of tilting of the gyro casing about its axis.

The determinant of the system of auxiliary equations of (281} is

D{_)_ //_ B_' (282)

The following equation is obtained by expanding the determinant (282} and

equating it to zero:

ABI),e-[-[(A _- I) BK -4-//_I]X4-_/_l'k' ---0. (283)

This equation has a double root ),_-_0. A linear first integral is

nL//_ -_--e,oast.B

Introduce the magnitudes

/tn K (284)
_t--- (A+J) B and Aa-- -7 ,

which have simple physical meanings: _, as already mentioned, is the

frequency of nutations of the gyroscopic device, shown in Figure 83, with

all its elements including the shaft Bperfectly rigid; k is the frequency of
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the torsionaloscillations of the mass to be stabilized, assuming the outer

gimbal ring to be fixed and the shaft Bto be elastic.

The following biquadratic equation is obtained by simplifying (283) and
inserting (284) :

A X_-_ (/_ + _') X'-p k'_' = 0. (285)
d -I- J

From this we obtain the two natural frequencies of oscillation of the gyro-
scopic device.

Using the notation:
A _s

g--A-+"J' z-----bT' |'--_"_', (286)

equation (285) becomes

az_-- (1 -_-_)z-_- |=0, (287)

in which the unknown z is a dimensionless magnitude proportional to the

square of the natural frequency of the device. The parameter - is by defini-

tion always less than unity. The value of the parameter E is a function of

the angular velocity of the gyro rotor. The following expression for the

parameter | is obtained from (279), (284), and (286):

(,4+ J)aX " (288)

Consider the case when _ is small relative to unity; this case corres-

ponds to a low angular momentum of the gyro or to a high rigidity of the
shaft. The roots of (287) can in this

series expansions :

z, ==_-- (t -- a) E24

case be approximated by the following

(1-- 3_H-2_')E3+..., (289)

z2=_- --]- -'---_-- | -_- (t __:) _s.__ .... (290)

The first terms of these expansions have a simple physical meaning. In

fact, inserting (284_ and (286) in (289) and (290) yields, when all right-hand

terms except the first are neglected:
BS

_kzz--"_'vs"-" (A -.I-,/)B ' (291)

__.| ___k, (A + 3) R"-__ AI (292)

These are respectively the square of the nutation frequency of the gyro-

scopic device for a perfectly rigid shaft B, and the square of the frequency

of torsional oscillations of two masses having moments of inertia A and J,

connected by a shaft of rigidity K (Figure 84).

FIGURE 84
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It is thus seen that formula (278} is correct for very small values of |,

but that for small values of E the frequency of nutations increases more

slowly with | than the angular momentum.
Consider now the case of large values of |, corresponding to a very

large angular momentum of the gyroscope or to a low rigidity of the shaft

B. The solution of (287) can in this case be represented as an expansion in
!

powers of I"

•,=t (293)

! _ , !--, ._..].. (294)=s-----_ "-t T + ---

The first terms of these expansions have likewise a simple physical

meaning. In fact, inserting (284} and (286} yields the following approxima-

tions :

t_ X
_).t _ k_---_ -T, (295)

-_. ,-- ._.._, (296)

Formula (296) gives the frequency of nutations of the gyroscopic device

when the mass to be stabilized is removed, and (295) gives the frequency

of the torsional oscillations of this mass when the outer gimbal ring is

fixed [to the ship].

The higher-order terms of expansions (293) and (294) introduce correc-
tions due to the existence of a dynamic linkage between the mass to be

stabilized and the gyroscope.

Numerical example. Let

A= 10gcmsec2; B =7.2gcmsec2; C =5gcmsec2;

n--1500 sec-1; 1= 10gcmseJ; K = 19,550,000 gcm.

Then

_/J -_-39t000 sec-2; _---_- -- t 955 000 sec-2;_-" (A+J)B

a = A--_-y= 0.5; 1_=_=0.2.

The following roots are obtained by solving (287):

sl=0,tS0; z,= 2.22.

The square of the natural frequencies of the gyroscopic device are

therefore

--_,_--_kSzl_-_ 352000 sec "_, _X_=k_zt_4340000 s ec-2-

The value obtained for the frequency of nutations, taking into account

the elasticity of shaft B, is in this case 5 % less than the value obtained

when assuming that all elements of the gyroscopic device are perfectly

rigid.
If the angular velocity n of the gyro rotor is doubled without altering
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its' geometric dimensions, the result is

v_--t 564000 sec-_; E-_-0.8:

z_ ----0.5t9; z_ -- 3.08;

--),_-- t O'J5 000 sec -_, --_-- 6 020000 sec -2.

In this case the difference between the two values obtained for the fre-

quency of nutations is 20%, and a correction has to be introduced in (278).

Curves of the roots of equation (287) as function of _ have been plotted

in Figure 85 for I = 0.5.

'//
FIGURE 85

It should be noted that a rigidity K= 19,550,000 gcm is relatively high;

it corresponds to the torsional rigidity of a round steel cylinder 10 mm in

diameter and 40 mm long.

The outer gimbal ring, the gyro casing, and the shaft of the gyro rotor
have rigidities of this order. Formula (278) is therefore incorrect even

for free gyros.
In practice, a correction factor of 0.5--0.7 is introduced into (278),

H

v _ (0.5--0.7) {A+_ " (297)

The natural frequencies of gyroscopic devices, taking into account the

rigidity of the elements, can be similarly obtained. Some of these prob-

lems were discussed earlier by G. D. Blyumin. An exact mathematical

treatment leads to the determination of the natural frequencies of a me-

chanical system having an infinite number of degrees of freedom in the

presence of gyroscopic forces.

The critical velocity of the rotor shaft must likewise be found taking

into account the rigidity and mass of the gimbal elements whose influence
can be considerable.

§ 6. The damping of gyroscopic and other devices mounted

on objects moving at high accelerations

The objects on which the gyroscopic devices are mounted often have

accelerations of the order of hundreds of g (gravitational acceleration);

this is the case when objects dropped from a great height fall into the water.
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In othercases, these objects are subjected to strong vibrations which pro- "

duce accelerations of the order of tens of g; this happens when the fuel is

burnt during the flight of a missile. The inertia forces caused by these

accelerations are undesirable, since they not only affect the accuracy of the

gyroscopic instruments, but may also put these out of order.

Large inertia forces can also be caused by careless handling of the in-

struments. Dampers (shock-absorbers) are used to reduce the inertia

forces. However, not only does the damping fail to achieve its aim in may

cases, it may even cause an increase in the inertia forces acting on the

instruments.

The following rule can be stated:
"The use of shock absorbers is justified only if the

distance through which the object containing the instru-

ment to be protected is braked (or accelerated} is not

greater than the damping travel."

Gyroscopic or other instruments have frequently been improperly secured

through ignorance of this simple rule.

Consider the case of sudden braking of an object having a translatory

motion. Let a(t)* be the deceleration of the object, and rathe mass of the

instrument mounted on the object. Assume that the shock absorber acts in

the direction of the object's motion. Denote by Athe force developed by the

shock-absorber. The equation of motion of the instrument, referred to the

object, is then
_z

m _-_ma(t)_A, (298)

where x is the displacement of the instrument from the equilibrium position

at steady motion of the object (Figure 86).

U

FIGURE 86

If the instrument is connected rigidly to the object, :r_-0 in (298). This

yields

A ""-Ao_ma(| ), (299)

where A o is the force with which the object acts on the instrument.

The product ma(t) is thus the inertia force acting on the instrument in

the absence of damping.

* The damping of vibrations is not discussed, being generally known.
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• When a shock absorber is used, a force ,4 acts on the instrument. This
force is, according to (298),

_z
.A-- m,z(0-- m-/_ • (300)

The product m4(t) is positive during the entire period that the object is
braked. It follows that ,4_Jl e only if the condition

--_ _. 0 13011

is satisfied during all this time.

It will be shown below that if the damping travel, i.e., the maximum

possible displacement of the instrument from its equilibrium position° is

4_.
much less than the braking distance, then the acceleration _ zs consider-

ably smaller than a(t)when condition 13011 is satisfied; it follows that then

damping does not attain its aim, since A_< ma(t).

The initial conditions of the braked motion are

Therefore

z(0)=0, _-@- -----O. (302)

z----i' [ iw(t)dt ] dt, (303)

where tz is the duration of braking, and

42z
m(t)----_-. (304)

If the limit of damping travel is denoted by a, then

Let the braking distance be _, and let the braking reduce the objectts velo-

city by a factor p; denote by a_ the maximum value of the braking decelera-

tion. The following theorem is then true for the conditions stated (including
inequality (305)).

T h e o r em. For every given braking law ,_-_',[0there exist in the inter-

val O_t_t z instants g for which w(t)is less than 8_ if _ is considerably less

than sz.

P r o o f. Introduce the mean value u).of the acceleration w(t) during the

interval 0_g_$_ Inequality (305) can then be written

#2

zu,-_ (306)

It follows that there are instants for which

Io(|) <_z o (307)

The time during which the object traverses the braking distance #_----Ilwill

be a minimum if the motion is initially unbraked, i.e., at the velocity Ip0,
the last part of #1 being traversed at the constant deceleration am= (Figure 87).
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Then

I_ -- Gm "

where _ __,

s.---h-_--- ,

is the minimum braking distance when the condition

is satisfied. In fact

where k is greater than unity. It is also clear that

where p is likewise greater than unity.

0

FIGURE 87

Inserting (311) and (312) into (309_ yields

(3O8)

(309)

(310)

(311)

(312)

__k _I --i
_" "_'--_ 1" (313)

It follows that

,--_, (314)

_'la mmz

Vo--P_* (315)

Inserting (311), (314), and (315) into (308) transforms this inequality into

t, _> x _, . (316)

where

(317)

(For example, if_,=F=2, then x=0.715.)
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• It follows from (307) and (316) that there exist instants t at which

i t
w(t) <_ --/ _s amz. (318)

This completes the proof, and also establishes the rule, formulated above,

on the cases in which damping of instruments mounted on moving objects
is indicated.

If the acceleration of the instrument relative to the object changes sign,
then A_>ma(t)by (300), and the shock absorber causes an increase of the

force acting on the instrument. This is to be expected if the period of natu-

ral oscillations of the instrument is shorter than the duration of braking the
object. In this case a shock absorber will even he harmful.

Several examples illustrating these considerations will now be given.
1. A spring of rate K = 150 kg/cm is used as shock absorber (Figure 88).

The instrument weight is mg= 10 kg. The object has a constant deceleration

a= 100 g; the initial velocity of the object is v0= 396 km/hr, and its final
velocity v= = 36 kin/hr.

0

FIGURE 88

The braking distance and time are in th_ case

g-#
tl--_--_--0.t sec, sl-_--6m.

The equation of motion of the instrument referred to the object is

whence m _i =--A= -t- _t=,

where

x -_ T nL C cos V_ t -J- D sin Ji_ t,

k----_ J_mg-- _- t2t.3 sec -1

is the angular velocity of the oscillations of the instrument relative to the

object, and Cand Dare constants which have to be determined.

The initial conditions (302) yield

c=0,

4= (0)
-_ - --_ kD --'O.

Therefore
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Themaximumdisplacementof theinstrumentfrom the equilibrium

position is

z.,, = 2-_-- 13.3 cm,

and is reached after a time

_---_ =0.0259 <0.' see,

that is long before braking of the object ends.

The maximum force developed by the shock absorber is twice the inertia

force

Ae=ma_ mg_--'- tO00kg,

since in this case

A_. .-- Kz_. -_ 2m_ = 2000 kg.

It follows that the shock absorber has a negative influence on the instru-

ment. In addition, the damping travel _>13.3 cm would hardly satisfy the

design requirements.

2. A noticeable shock-absorber action exists only at excessively large

displacements of the instrument relative to the object.

Let, for instance, the spring parameters be such that

";"=Ty T _>tl"

The following relationships obtain at the instant braking ends:

t --

Further motion of the instrument is determined by the differential

equation

with initial conditions

•

az(0) _f_" . ..
---_--=a V _-s,a xr_, k=_r-_.

The integral corresponding to these initial conditions is

z = _ 1(t -- ¢_ kt,) co, kt + si. U, sin_l.

The maximum displacement of the instrument is therefore
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Themaximumloadontheinstrumentis thereforedeterminedbythe
formula

Am_ _ Kz_ _ 2ma sin -_--- 2A o

Let

-_X_- ---- 2 sin -_ -_--OA.

This shows that the force acting on the instrument is only one tenth of the

force acting when the instrument is rigidly secured to the object.

Inserting tl=O.1 sec:

K
k____--| sec -l , m_Aa-- | sec-2.

m

The corresponding maximum displacement for a = 100 $ will be almost
100 m.

These calculation:s show that it is advisable to use shock absorbers when

the braking duration tlis very short. A very stiff spring can be used in this

case causing a comparatively small displacement of the instrument relative

to the object.
Let, for instance,

tzm_0.003sec, A,_--_0,2A o, and a_tOg.
Then

• ktl A_ n 4 2ma 2a ..
sm--_2-_-_--_e-_v.., k_-66.7 sec -1, z_--_-_-_---4.4cm.

3. Due to space limitations stops are frequently fitted which restrict

the deflection of the shock-absorber spring. If the object is sharply braked,

the instrument compresses the spring, moves through its entire free travel,

and strikes the stop. The impact forces arising at this instant are consider-

ably higher than the forces arising when the instrument is rigidly secured.
Such a shock absorber is therefore not recommended.

FIGURE 89

A shock absorber with restricted travel can be represented as a combina-

tion of two springs compressed by the instrument mass (Figure 89). The

spring (_z has a relatively low rate K; the spring Cs has a rate Bequaling that
of the stop.

The compressionofspring C s starts after spring C l has undergone a de-
flection 8.

Assume for simplicity that the deceleration a of the object is constant

and that the duration of braking is longer than the compression time of both
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springs; the instrument's motion relative to the object then takes place.
under the action of the elastic forces of the springs and the constant inertia

force

Denote by ] the maximum deflection of spring C t. The deflection of

spring C, is then]-_-_, and the potential energy accumulated by the two

s prings is

The following equation expresses the law of conservation of energy:

The right-hand side of this equation represents the work done by the force

Q along the displacement ]-{-_, The maximum value of the deflection is
therefore

/=0- x_+ ¢q, 4-2a_- xr_,
£-I-B

The maximum value of the force acting on the instrument is

__=x0+/)÷B/.

Let

K--|50kg/cm, 8---Smm, mg--iOkg, Q_---iOOOkg, and B---_|50000kg/cm.

This corresponds to a deformation of the stop amounting to 0.067 mm
under the action of a force of one ton.

We obtain in this case

]_O.08_cm; A=_-----|3OSOkg_> |3_.

If the deflection ] of spring C z is neglected as being small compared

with the deflection a of spring C 1, we obtain

½ (K_'-_-BJ') ___-----Q_;] = _'-- 0.0802 cm;

A,_=_ K_nL BI--- i2100 kg.

The formula for Am,= can be simplified still further without great error:

Amx _ _/_-_--- t2 240 kg.

The physical meaning of the simplifications made in this last formula

is that the influence of the shock-absorber spring is neglected after impact

against the stop, as is the deflection ] relative to _.

In fact, the force needed to compress springC Iby 5ram is 75 kg.

This is considerably less than the inertia force Q = i000 kg.

It is true that an increase of the shock-absorber spring rate reduces

the value of A_; this, however, has no great effect, since the force on the

instrument is 2Q = 2000 kg even in the absence of impact against a stop.
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ChapterIV

LINEARTHEORYOFGYROSCOPICSYSTEMS

§1. Theequationsof gyroscopicsystems

Gyroscopicphenomenaobeystrictly the lawsof classicalmechanics.
Theyprovide, togetherwith themotionof celestialbodies,theexperi-
mentalcorroborationof thelawsof classicalmechanicsin a reference
framehavingits origin at thecenterof massof theuniverse,withaxes
orientedaccordingto theNewtonianframe(theso-calledinertial reference
frame).

Theequationsof motionof thegyrosin gyroscopicsystemsmustthere-
fore allowfor theangularvelocityof theEarthandfor theadditionalrota-
tionof thegyroscopicdevice,togetherwith theobjectcarrying it, onthe
curvilinearsurfaceof theEarth.

Theforcesactingonthegyrosaredeterminedby therelative position
andmotionof thegyroandtheotherpartsof thegyroscopicdevice,andby
themotionof the objectonwhichthegyroscopicsystemis mounted.The
inertia forcesarisingduringthetranslationalmotionof theobjectcanaffect
thegyroconsiderably,in particularif thereareunbalancedparts in the
gyroscopicdevice. Theinfluenceof thetranslationalmotionis in some
casesneutralizedby specialmeans(compensationof theaccelerationsand
velocitydeviations),while in othercasesit is madeuseof for themeasure-
mentof theangularvelocityof theobject,integrationof its linear accelera-
tion, or othermeasurements.

Euler's dynamicandkinematicequations,widelyusedin theoreticalme-
chanicsin thestudyof themotionof arigid bodyaboutafixedpoint, are
notsuitablefor thestudyof thegyro'smotion,dueto thefact (alreadymen-
tionedin Chapter II, § 3) that the two Euler angles, corresponding to a devi-

ation of the axis of rotation of the rigid body from its initial position, are

in general not small. At the same time, the axes of rotation of the gyro's

rotors of almost all gyroscopic systems deviate only slightly from some

fixed direction in space; in any case, the change in the mean position of the

rotor shaft (precessional motion) proceeds at an incomparably slower rate

than the rapid motion of the shaft about this mean position (nutational mo-

tion). It follows thai in order to study the motion pattern it is sufficient to

consider only small deviations of the rotor shaft from its initial position

during a short time interval.

This shortcoming of the classical equations can be overcome either by

using Krylov's system of modified Euler angles* or by using an altogether

* Krylov, A.N. and Yu. A. Krutkov. Obshchaya teoriya giroskopov i nekotorykh tekhnicheskikh ikh

primenenii (General Theory of Gyroscopes and Some Technical Applications). -- lzdatel'stvo

Akademiya Nauk SSSR, Leningrad. 1932.
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differentsystemof angles,suchastheanglesrepresentinga finite rota-
tionof thefirst kind(seeChapterII, S3).

Let _ beacoordinatesystemorientedaccordingtotheNewtonianframe,
andxyza coordinatesystemcharacterizingthepositionwhichthetrihedron
abe attains as a result of successive finite rotations about its edges g, b,

and c through angles a, _, and I respectively, the initial position of a, b, and

and ¢ coincidingwiththe axes _, _k, and C$, respectively (Figures 90 and 91).

FIGURE 90

z'z

FIGURE 9]

The direction cosines of the system _o%_o relative to the system xyz can
be obtained from (182} (see Chapter II, § 3) by interchanging E and z, _and

y, _and z*. The result is:

z y $

cospcos_ --cospsinT slap

_o sinasin_cosT-_- --sin _ sin [3sin T 7t- --sina¢,_

-}- cos _ sin T -_- cos _ cos T (319)

_cos a sin p cos "_-_ cos a sin p sin T _ cos a co6 p

-]- sin _sin 7 -]- sin _ cos T

If the angle _ is changed, _ and 7 remaining constant, the trihedron xyz

$a .
rotates about the _-axis with an angular velocity _ (Figure 90) whose

projections on the z-, y-, and z-axes are, according to (319),

da de da
p.--_-cos_cos T, q.---_-cos_sin 7, r.---_-sinp. (320)

If the angles _ and T are kept constant, the trihedron zyz revolves about

d_ (_ denotes thethe//-axis of the system _dytz _ with an angular velocity _-

position of the trihedron abe after the finite rotations through angles _ and

about axes a and b have been completed) (Figure 90).

The direction cosines of the system zy: relative to the system a4//z t

" In Chapter If, § 3 the trihedron _y3 denotes the initial position of the axes ab¢, while here it denotes

their final position.
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(Figure 91) are

z cos T sin T 0

¥ ---sin 7 coj T 0 (321)

• 0 0 l
d_

It follows that the projectio.s of the angular velocity _/-on the axes z, y,

and • are respectively

dp
pp-- _- sin T,

d

rp--O.

(322)

If, finally, the angle 7 is changed with g and _ remaining constant, the

trihedron XllZ rotates about the z-axis with an angular velocity rT--- _

(Figure 91).

The following expressions for the projections of the angular velocity of

the trihedron _z on its edges are obtained through addition:

d,, dp
p= _- cos p ©os 7 -_- _/" sln 7;

da dp
q_ -- _- cos p sin T-_- _F/-©os T (323)

Assuming that the angles a and _ and their time derivatives are small,
expressions (323) can be replaced by the following approximate expressions,

accurate to second-order terms in g, _, _-, and _-:

_" ©osI-_- _ slaT;p=_-

de
q'_-- _" sin T-[-_ OmT; (324)

d7
r-'- _-.

Inserting these formulas into Euler's equations of motion

dp
A _- + (c--B) _r=X..

•+.(A--_'_ rp'--M_, (325)B

C _ + (B-- A)I_--M,.

[for the meaning of A, B, and C see explanations after (278) and (279)]

yields, since A--_B(because of the dynamic symmetry of the rotor):

sm_+_ cos --

C_# =M,,.
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We multiply the first equation (326) by coa'f and the second by-sin_ a.nd .
add them term by term. We then multiply the first equation by sin's, the

second by cos T and add them again term by term. The results are the well-

known linear equations of the time derivatives of a and _:

d_ , .d]! ,.
A _-t- _ _-- m_,,

(327)

A _-_--H_-.--.M_,,

where
M,. _- M, cos "_-- M e sin T,

(328)
M,,= M, sin'f-_- Mvcos_[

are the sums of the external moments about the _d- and y'-axes acting on the

gyro rotor, and

B -- C d..]7 (3 29)
dt

is the angular momentum of the gyro rotor, constant, according to the

third equation of (326), if M:--_0.

When the gyro is suspended in gimbals, the moments Ms, andM_,also

include the moments of the inertia forces on the rotor due to the mass of

the gimbal rings (Figure 92). For small angles a and _ these are

__..d2a. , _12_
-- (I_, T-s') _'_, --*Y' d-ig ' (330)

where Ira, and /_, are the moments of inertia of the inner gimbal ring (or

housing) about the _-, and _/-axes, and I_, is the moment of inertia of the

I'/' 'y'

Z,Z e --I"-

FIGURE 92

outer gimbal ring about the El-axis; this. axis coincides with the Z-axis.

We introduce the symbols

A,.._AOt-IE,-J-I.,, B,-_A+I,,. (331)

Assuming the angle between the _- and Z-axes to be small, the equations

(327) can now be written:

a,. ap
A l -gii -_- H _ _ M ." -_ M k ,

B d'_ H_d______Mw,. (332)
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Here M_. is the sum of the external moments about the axis of the outer

gimbal ring acting on the outer and inner gimbal rings and on the gyro

rotor, andMw, is the sum of the external moments acting on the rotor and

on the inner gimba] ring about the _-axis [Figure 92].

The moments Mh, andMv,, include the moments due to friction in the

gimbals bearings, and the moment of the gravitational force, the moments

due to translational inertia forces, the moments of various additional forces

(e.g., correction forces), etc.

Equations (332) are widely used in practice for preliminary studies of

stability problems in gyroscopic systems.

In deriving (332) terms of second and higher orders in a and _and their

time derivatives were neglected. It was also assumed that the moment M z

is zero. For more exact solutions these terms must be included.

Many other simplifying assumptions were also made. The imperfect

perpendicularity of the gimbals axes caused by manufacturing errors, the

clearances in the bearings, the elasticity of the gimbals elements, the fric-

tion in the rotor shaft bearings, etc. , were neglected.

There is thus no sense in analyzing the stability of the motion by means

of differential equations of higher order than the linear equations (332),

without taking into account experimental data.

When the gyroscopic system is known to be stable and the main aim is to

study its accuracy, equations (332) can in many cases be considerably sim-

plified by omitting the so-called inertial terms

AI_ and Bs_-_t.

Equations (332) then become

//_ = MM
d,

--B_-=Ng,

(333)

(334)

The equations obtained can be considered to result from the time aver-

aging of equations (332), with moments /V_ and Mr,, varying slowly. In fact,

for constant M_andM_,, the motion described by equations (332) can be re-

presented as the sum of the solutions of equations (334) and of the set of

homogeneous equations

A d_ ± _ d_ n

B d'_ - d, ^ (335)

-_--_27 =u.

Equations (335) represent harmonic oscillations (nutations), usually of

high frequency :

H

"='-"_--_lBl " (336)

da d_
The average value of the solutions of equations (335) (_and _-) is zero.

There is a simple geometric interpretation to equations (334). Draw

a plane perpendicular to the _0-axis at unit distance from the origin of the

coordinate system }0_ (Figure 93). Denote by G o the intersection of this plane

with the vector of angular momentum //(or, which is the same, the axis of

rotation z of the rotor) drawn from the origin.
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Using (319), the following expressions are obtained for the coordinate.s

of point Go:

_=OGo cos Eo: = OGo sin [3,

_ = OGocos-_z =--OGo sin ,, cos p, (337)

= OCocosr_ = OCocos• cosp.

by neglecting all terms of higher order than the second in _,Since _0=t,

and _ we have

_o=p, _=--_.

Inserting (338) in (334) yields

H -_t -----M _,,

d_o _ MI,.H-_---

(338)

(339)

d_
represent projections onThe derivatives _ and the the axes E0 and

_]0of the velocity of point G orelative to the system _, which has a trans-
lational motion with axes oriented according to the Newtonian frame.

H

_o

_7o

0....%
FIGURE 93

The products B--_- and H-_-- represent the projections on the axes of the

velocity of the end point of the vector Rreferred to the same coordinate

system. The following approximation is valid because of the smallness of

the angle $ between the axes U' and _10:

M e, _" M,,.. (340)

Equations (339) thus equate the velocity of the end point of the angular

momentum vector to the moments acting on the gyro*. This follows also

from the general theorem on angular momentum if it is remembered that

the total angular momentum of the gyro is practically equal to 77, re-

presented by a vector always directed along the rotor shaft. Equations

(334) or (339) form the basis of the elementary theory of gyroscope pre-

cession.

* For a more detailed treatment see the author's paper "K teorii giroskopicheskogo mayamika"
(Theory of the Gyroscopic Pendulum).-- PMM. Vol. 21, No. 1. 195q.

II0



It is convenient to replace equations (339), which describe the motion

of the rotor shaft referred to the system _, by

HV I -_ MEt
(341)

referred to the moving system _. The latter is usually partially fixed to

the moving object ( the C-axis may be vertical, while the @-axis is directed

along the ship's course line). In (341) vl and v_ are
the projections of the "absolute" velocity (relative

_? to system _0_) of point G(defined as the interac-

tion of the axis of rotation of the gyro rotor with the

plane parallel to the _ plane and situated at unit

f | distance from it) on the moving axes | and _l(Figure

94). It is assumed that the coordinates _ and _ of

_ut _ point G are small compared with unity, and thattherefore the angles of deviation of the rotor shaft

from the C-axis are small; M Eand M 1 are the sums
0 of the moments about the _-and _-axes acting on

the gyro rotor, including the moments caused by the
_,_:_ reactions of the rotor bearings.

The coordinate systems _b_ and _ have a com-
mon origin at the point of intersection of the rotor

FIGURE 94 shaft and the axis of the inner gimbal-ring pivots

or gimbal housing. We denote by wi. wq, w(the com-

ponents of the angular velocity of the trihedron _v_ (Figure 94) relative to the co-

ordinate system _%_. The projections of the velocity of point Gon the axes

and _l are:
d_

(342)

v_-- _ -[- E®c-- t • m_.

Equations (341) thus become

H(-_- + _%--'_c)--- M,;
(343)

These equations have many practical applications.

Equations (334), (339), and (343) can obviously also be obtained by

Lagrange's method by writing the equations of motion of the system in

generalized coordinates. Lagrange's method is particularly suitable for

setting up the equations of motion of complex gyroscopic systems mounted

on oscillating and rotating bases. Many relationships that are far from

obvious are obtained almost automatically by this method. Its drawback

lies in the complicated calculations necessary, since the small terms are

eliminated from the equations only at the very end. In addition, the inter-

play of forces in the gyroscopic system remains obscure.

When the equations of motion of a gyro mounted in gimbals are set up

by Lagrange's method, it is first of all necessary to establish an expres-

sion for the kinetic energy of the system "rotor-gimbals" in its motion re-

lative to the coordinate system _, whose origin is at the gimbals center
and which has a translational motion.
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Let _ bea coordinatesystemfixedto themovingobject, the f-axis
beingtheaxisof theoutergimbal-ringpivots. Thekineticenergyof the
outerring is

T I ____ E I t, ( _£_ .__td_ tet)_ -11-I ,h (w, cos a + ®c sin _)z -_-

sin a _t- e_¢cos _)t], (344)+ (-®,

where tt is the angle of tilting of the outer ring relative to the coordinate

system [11_, and _et, e_, tec are the projections of the angular velocity of this
coordinate system on its axes; Itt, l,h, l_are the moments of inertia of the

outer ring referred to the coordinate system _l_h{1 (Figure 95) fixed to this

ring in such a manner that the [j-axis coincides with the _-axis, while the

•h-axis coincides with the F'-axis of the inner ring (or the housing).

o,V_ a/o

_" 0

FIGURE 95 FIGURE 96

It is easily seen from Figure 95 or the table of direction cosines of the

coordinate system |l_h_l relative to the system _

that the expressions

li 'q ¢

_, t o o
_h 0 cos _. sin ,.

0 --sin • cos

(345)

_a

*)tt, _ _--I-- *st,

,_I = mncosa.__wcsina ' (346)

w'c,_ --%t sin • -t- _c cos

represent the projections of the angular velocity ¢eXof the outer ring on the

axes of the coordinate system _1_ fixed to it.

Let us now find the projections of the angular velocity eD'of the inner

ring on the axes of the coordinate system z'_g fixed to this ring in such a

way (Figure 96) that the z_-axis is directed along the rotor shaft z, while

the _/-axis coincides with the va-axis of the outer ring. This angular ve-

locity differs from the angular velocity of the outer ring by the vector of

the relative angular velocity -_-, directed along the _]-axis. From the

112



' direction cosines of the system a_s ' relative to the system Ea_h_:

z' cosp 0 --m.p
V 0 1 0 (347)

s' sin p 0 co6p

and from (846), these projections are found to be

k
"'"=(_-+ "l)_°'P- ¢---,_i,.. +,,_,),_ p.

re's" _--- mt c°e a'J" mcsin a'J" _ ' (348)

k
.,, = (_- +._).,. p+ (--_,,_.. +®__o,.) =p.

The kinetic energy of the inner gimbal ring is therefore

,.: + o. (-.,,,..+.,0o..),,.p?+

I . (34 ,
where I#, Zw,, Id are the moments of inertia of the inner gimbal ring re-

ferred to the axes d, ys Z'.

The kinetic energy of the rotor is

T,--- _IA (p'-]-qs)-]-Crr], (350)

where the projections p, f, and r of the rotor's angular velocity on the z-,

y-, and z-axes fixed to the rotor are

da d_ .
p= -_-cosp cosT+-_-s,nT+wtcospcosT-I-

-I- w,_(sin a sin _ cos If-_- cos a sin 7) -]-

_c (_cos a sin [3 cos T -_"sin a sin 7),

d_ d_
q : --_T cos _ sin 7"_-_- COST-- O_Cos psin T +

..__w_ (_sin a sin _ sin 7 __. cos a cosT)__" (351)

-_- ®_ (cos z sin _ sin 7 + sin z cos T),

d,, d T . .
r= _- sin p +-A_-F _, s,n p--,% s,n • cos p-F

-t- ®ccos • cos p,
which differ from the analogous formulas (323) by the presence of terms

containing w}, w_, and _c" These terms are the projections on the axes
z, y, z of the angular velocity of the trihedron zyz relative to the system

}0_" They are easily found from (182).

Inserting (351) into (350) yields the following final equation for the kinetic
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energyof therotor:
,..=-_{_[(,_oo,_+,,,_o,_+°,._.,._.._-°,oo,,.,,._)'+

d_ aa .+(_+°,_o_.+°,""4]+_I:(_-+",)''"p+

The total kinetic energy is equal to the sum of the kinetic energies of

the outer gimbal ring (rl), the inner ring (Ts), and the rotor (Ta):

r= r,-t- r,-t- r_ (353)

The generalized coordinates are here the finite rotations ct, _, and T

about the axes }, y', and z respectively. It follows that the Euler-Lagrange

equations can be written in the form

d _T _T
d_, #a ----"ME'

d OT OT

d* _(-_t) #P----'M'" (354)

where M 1 is the sum of the moments about the _-axis of all forces acting
on the system, including the inertia forces due to the object's motion,

M_, is the 8urn of the moments about the pivot axis _, of the inner gimbal

ring of the forces acting on the inner gimbal ring (housing) and rotor, and

M, is the sum of the moments about the rotor's axis of rotation s, of the

forces acting on the rotor alone.

If_g ®4' scare zero (this is equivalent to the assumption that the motion

of the base can be neglected, which is frequently the case when studying

problems of the stability of gyroscopic devices}, then inserting (344), (349),

and (352} into (353) yields,

_=_-I['_+('*'+.)oo.,_+ (,..+_).,.,_j(_)'+
d_ I d 7 I d_ d7 .

Inserting (355) into (354), the following system of differential equations

is obtained after some simplifications:

(356)
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whoseaxis is madeto movetogetherwith theaxisof symmetryofthegyro-'
spherebyanaccuratefollow-upsystem. Thecommonaxisof thestator
andthesupportingcupis linkedbymeansof the latitudecarriageKto the

heavy spherical pendulum M suspended in its gimbals. The latitude carriage,

whose function will be explained later, moves the stator axis from the pen-

dulum line in the northern and eastern directions through an angle propor-

tional to the cosine of the local latitude. When the ship turns, the carriage

is automatically rotated by means of a link with the gyrocompass.

FIGURE 97

This scheme doe,¢: not make full use of the possibilities of aerodynamic

suspension. Much better results can be obtained through relatively minor

changes_ as a result the error in the determination of the true vertical can

be reduced to several minutes of an arc.

The theory of the gyrovertical with aerodynamic suspension, and the

theoretical basis of the alterations that the author proposed already in

1940, are given below.

The gyrosphere is completely stable at normal speed of rotation, and

nutations produced by an external cause such as a shock are rapidly damped.

Accordingly, the equations of the elementary theory of gyroscope precession

should be used for describing the motion of its axis.

By replacing the letters _, _], _by _, !t, z respectively, and Hby - H(it is

assumed that the gyrosphere rotates clockwise if viewed from above), equa-
tions (343) become

(357)

--H ( _-_t+_o_--w.)= M ,.

The coordinate system zyz, with its origin at the geometric center of

the gyrosphere, has its z-axis oriented along the local vertical (Figure 98).

The orientation of the z- and y-axes will be stated in each particular case.

In equations (357) ]/is the angular moment of the gyro; _0,, ¢0_, w, are the

projections of the angular velocity of trihedron zyz on the axes z, il, and z,

oriented according to the Newtonian frame; z and y are the coordinates of point

G (Figure 98) at the intersection of the gyrosphere axis of symmetry with
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(l r + A) _ + (I,_ -- z,, + A -- c) cospsz,,p _t/(_'--

d= $_
-- Cc°SP_T_'= Mg" (356)

d, --- p._-_---l-c©osp-_---_-=m,..

If all terms of higher order than the first in a and p and their time deriv-

atives are neglected and Mr is assumed to be zero, the first two equations

are reduced to (332).

Gyroscopic systems are usually connected with electric devices which

cause the correcting and stabilizing moments. Lagrange's method of the

second kind* can be used for setting up the complete system of equations

for such an electromechanical system. The kinetic energy T in this case

also includes terms representing the energy of the magnetic and electrical

fields, while the number of coordinates of the gyroscopic systems is in-

creased to include the corresponding electric parameters. This method is,

however, of limited practical importance, the equations being usually set

up by elementary methods.

The equations of small motions of gyroscopic systems are, as already

mentioned, linear in the time derivatives of the coordinates. In certain

cases a "linearization" of the forces acting on the system is possible; in

other words, they can be represented as linear functions of the coordinates,

or as linear functions of the coordinates and velocities when viscous fric-

tion is taken into account. Only such linear gyroscopic systems will be con-

sidered in this chapter. The classical examples of a linear gyroscopic sys-

tem is the gyrovertical with an aerodynamic suspension (cf. § 2 below).

In other cases the linearization is carried out by neglecting dry (Coulomb)

friction in systems with ideal (in particular, vibrating) bearings. Some

problems concerning the theory of essentially nonlinear gyroscopic systems

have been deferred to Chapters V and VI,

§ 2. Theory of the gyrovertical with aerodynamic

suspension and its possible improvements

The gyrovertical with aerodynamic suspension of the sensing element is
an instrument for the continuous automatic determination of the vertical

direction on a ship. The instrument gyro is a steel sphere with internal re-

cesses determining the dynamic axis of symmetry, with a special "head" for

controlling the follow-up system. The gyrosphere is driven by a rotating

magnetic field on the principle of an asynchronous motor, and has a constant

speed of more than 10,000 rpm.

The sphere is supported on an air layer one hundredth of a millimeter

thick formed between the rotating sphere and a bronze cup of rather intri-

cate form. The stator S, which creates the rotating magnetic field, and

the supporting cup are mounted on the inner gimbal ring. The bearings of

the outer gimbal-ring pivots are fitted to the so-called stabilized ring G,

* Bulgakov, 8. V. l'Kolebaniya" (Oscillations). -- Moskva, Gostekhizdat. 1954.
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'the,zg plane (the latter is parallel to the zy plane and located at unit distance

above it); M. and Mrare the sums of the moments about the z-and //-axes
applied by the stator and cup to the gyrosphere. The z and //coordinates

of point G are assumed to be small.

In order to establish the laws to which moments Msand Mware subjected,

we consider a gyrosphere on a so-called fixed base, i.e., with stator and

supporting cup of the instrument fixed relative to the Earth, the axis of the

stator and cup being vertical. The motion of the revolving gyrosphere axis

following a perturbation will then be such that point G traces a spiral (Fig-

ure 99) ending at a fixed point gdistinct from point 0 in which the vertical

0

/

zi

6!

_005

FIGURE 98 FIGURE 99

axis Z intersects with the horizontal plane 20. The distance between G and

E decreases in such a way that the ratio between the decrement per unit

time and the length _'Eis constant, and that the angle between _ and a fixed

horizontal direction increases in counterclockwise direction at a constant

rate. It follows that point G moves about point Ein a logarithmic spiral

p=p_-_. O=Oo-t-pt , (358)

where P0 is the initial distance of G from E, and (}l is the initial angle be-
tween EG and some fixed direction in the horizontal plane.

Let the east-west line be this fixed direction. Draw the z-axis of the

coordinate system zllz to the east, and the F-axis to the north. Denote by z,

and y, the coordinates of the fixed point Edefining the equilibrium position

of the gyrosphere axis. The law of motion of point Gcan now be repre-
sented in the form

:=z.-I- p ©os O.
(359)

y=y, --_ psin O,

where p and 0 are given by (358).

The projections of the angular velocity on the axes z, y and z linked to

the stator fixed relative to the Earth (Figure 100), are

w.=O,

my= U cos ?, (360)

w,-'- Usin ?,
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where U is the angular velocity of the diurnal rotation of the Earth .

(0.0000729 sec-1), and ? is the local latitude.

The inverse problem of dynamics -- determining the forces acting from

the known motion -- can now be solved by inserting (360) into the differential

equations (357). It follows from (359) and (356) that

and

dz __ _p
-&- ---_ cosO-- psin e-_ ---

=-- kp_'tt cos O-- pp sin O=

= --k (z -- z.) -- p(v-- u.) (361)

av----k(y--Vo)._t- p (z-- z,). (362)

Inserting (361), (362), and (360) into (357) yields

M.=--n [--kz-- (p-F Uein _) v-F _.-t- pv.+ Ucos _l,
(363)

M r = --H [--kV -}- (p --_ U sin ?) z -[- kV. -- pz.].

The actual value of the coordinates z, and U° of point E or, which is the

same, of the angles between the equilibrium position of the gyrosphere

U

FIGURE I00

axis and the yz and xz planes*, must satisfy:

kx._ PYo-I-Ucos_--O,

ky.-- pz. _0. (364)

Using (364) and neglecting Usin? which is small in comparison with p

(the vertical component of the Earth's angular velocity being much less

than p) yields the following formulas determining the motion of the gyro-

sphere supported on a fixed base with the stator axis vertical:

M.= H (_r + py),
M,= H (_-- pz). (365)

Expressions (365) Can be considered as the projections on the x- and

]/-axes of the geometric sum of vector Mr and vector Mr, each of which is

proportional to the angle of deviation of the stator axis from the pendulum

line (Figure i01); the proportionality factors are k and p respectively.

* [This is the actual equilibrium position.]

I18



The vector Mr is parallel to the straight line connecting S and G and re-

presents the component normal to the gyrosphere axis of the torque M

due to the stator's electromagnetic field (Figure 102).

The vector M# is perpendicular to SG and represents the moment tending

to make the sphere's plane of symmetry coincide with the plane of the field.

This moment is, inter alia, causedby the magnetic hysteresis of the sphere's

material and the properties of the aerodynamic suspension.

2

FIGURE 101 FIGURE 102

The main assumption on which the subsequent analysis is based is the

applicability of (365) to the case of a moving base. This assumption cannot
lead to serious errors, since the linear velocities of the gyrosphere cor-

responding to its rotation are much larger than the linear velocities of the

points of the stator when the pendulum linked to it oscillates.

On the strength of this assumption the equations of motion of the axis

of a gyrosphere supported on a moving base can be written [by inserting

(360) and (365) into (357)]

--H (-_;-,,__--y Usin ? nu U cos ?) =kH (x-- _) .nL p H _y -- _),
(366)

+x v sin (y-- pn(x--
where _ and "_ are the coordinates of the point $ at the intersection of the

stator axis with the horizontal 2g plane (the :_-axis points eastward as be-

fore).

Let

_=u, _-_V, (367)

where uand v are constants.

Then in accordance with (366), the gyrosphere axis will move toward

an equilibrium position whose coordinates x_ and y_ satisfy the equations

Yl U sin ? _ U cos ? -- k(x I _ u) -Jr p (Yl _ v),
(368)

_ x I U sin ? = k (yl _ v) _ p @l _ u).

The following equations have therefore to be satisfied in order that the

equilibrium position of the gyro axis be vertical, i.e., that xjn_/h=O:

Ucos_=_+ pv,
(369)

O= pu--lw,
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whence

kU cOa_

_=_. +

(370)

The stator axis must (Figure 103) therefore be inclined at an angle u to

the east and at an angle v to the north, or which is the same, at an angle

,= u%_/--}-____--6'cost (371)

in a direction which forms an angle # with the east-west line, where

p
tg # _-g _-_-. (372)

Assuming k =0.01 sec -1, p=0.00436 sec -1, the values of u, v, i(for a

latitude of 60 °) and _ are:

u = 0.00305; v = 0.00133; , = 0.00333 (t t. 5');

= 23o30 '.

This additional inclination of the stator relative to the pendulum line

(the line connecting the center of suspension with the pendulum's center

of gravity) is obtained by means of the latitude carriage K(see p. 116).

W
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FIGURE 103 FIGURE 104

We denote by ¢ and _ the coordinates at the point of intersection M of

the pendulumline with the z g plane (Figure 104). The coordinates of ,9
are then

_ ____.ktlcos_k'+p }-"
(373)

pU cos ? -- o
---_'T'P"

Inserting these expressions into (366) yields (after some transformations)

dz
d--/--{-kz-}- (p-- U sin_) U--_k¢-]-/@,

(374)
dy
_-T-t- _ -- (P -- U _in _) ==/t_ -- p_.
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• We multiply the second of equations (374) by i_and add it to the

first. Writing

z_x-}-i V and 7_-_-_- t_ (375)

and inserting these expressions into (374), we obtain the following linear

differential equation of the first order:
d:
d-'7+ [k-- i (p -- Usin _)] z--_- (k-- Ip) 1. (376)

The solution of this equation for -_m_.0 (vertically suspended pendulum;

_=IB=O) is

• = _'_ te_O_-Ulln _)#. (377 )

According to (37'7), point G moves along a logarithmic spiral from point

z_-_ at t=0to point O for which *_---0 (Figure 105). In fact, it follows

from (377) that in this case

]•ji_]zoJe'_ , argt=argzo+(p-- Using)t; (378)

the length of Oz and its inclination to the 2-axis vary according to a law

similar to that given by (358).

g

FIGURE 105

Equation (376) can be used for studying the behavior of the gyrosphere

during the shipVs rolling when on a fixed course.

Let the /i-axis be directed along the ship's course line and let the rolling

of the ship cause oscillations of the pendulum given by

a_%sin wt, _---0, (379)

where % is the amplitude of pendulum oscillations relative to the vertical,

and _, the frequency of roll.

Because of the large difference between the period of natural oscillations

of the pendulum and the period of roll, it can be assumed that the pendulum

is at any moment directed along the apparent vertical. If the center of the

pendulum's suspension is located at a distance ! from the axis about which

the ship rolls with an amplitude 00, _ is given by

_=_-_0 o. (3801
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Weinsert (375)and(379)into (376)andexpresssinpt by exponential

functions. The following equation is obtained after neglecting U sin _ which

is small in comparison with p:

dz

dt "_- (k--ip)z_--- a°(k tp) (e_# --e-'_). (381)-- 2_

It is sufficient to find the forced oscillations of the gyrosphere axis,

since its free oscillations are given by (377) and become damped with time.

The solution of the differential equation (381) is,

ao(k-- fp) [ e_t e-4l*t ] (382)

The components in brackets can be interpreted as vectors of different,

constant moduli rotating in different directions in the complex plane with

equal angular velocities. Solution (382) corresponds therefore to a motion

of point G along an ellipse (Figure 106) with semiaxes

• , + , ]a 2 Ck, + (p-- },)' Ckz + (p + _)_ '

b __ a0 ktq_'-_" [ i , ] (383)2 Ck,+ (p--_), Ck'+ (p+ _,)2 "

The frequency of roll pis of the order of 0.5--1.0 sec-1, and is therefore

much larger than the parameters k and p. Formulas (383) can therefore

be replaced by the following approximation:

P
(384)

b = ,topq'ii + #t
_, ,_a.

These last formulas could also have been derived directly from (374)

by neglecting in them the terms containing x and y. These terms are in

fact considerably smaller than the right-hand sides of the equations since

the gyro-rotor shaft deviates from the vertical far less than the pendulum
line. We thus have

dz
_- _ k"osin _,

(385)
_'_-_ ---_--P"o _,sin

whence

x -------- kao cos iLt,

(386)

y_ -_ cos _t.

These equations define a harmonic motion of point G along a straight line,

the amplitude being given by the first of equations (384). Inserting (380) into

(384) yields the following final expression for the amplitude of the oscilla-

tions about the vertical carried out by the gyrosphere axis caused by the

rolling of the ship:

a= pl ksVT/'-_p_ Oo" (387)
g
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• Numerical example. If/=8m; k= 0.0100 sec-l; p= 0.00436 sec-l;
0 = 0.209 (12°); and F = 0.6 sec -1 (period of roll about 10 sec), then using
(380) and (384) we obtain

• .--0.06t4 (3°3t_, a=0.00tt2 0_, b=0.0000t (_'_.

To reduce the error in the instrument indications caused by the rolling
of the ship, a special device is used in gyroverticals. This device restricts

the pendulum's deviations from the perpendicular to the deck plane to 4--6%

FIGURE 106

Such a device is not always necessary. In the above case, for example,

the amplitude of the pendulums angular oscillations is less than 4 ° . In ad-

dition, the pendulum's oscillation on the inclined deck of a listing ship will

be asymmetrical, leading to considerable errors. Finally, errors of the

type of the phenomena observed by M.I. Zaitsev (Chapter VI, S 1) can occur

evenwith symmetrical oscillations when the pendulum is periodically stopped

by the restricting device.

It is therefore desirable not to restrict the sway of the pendulum. This

could, however, cause possible large inclinations of the stator and the sup-

porting cup, which could impair the normal functioning of the aerodynamic

suspension. The instrument error due to rolling would, in addition, remain
considerable.

Both these difficulties are avoided by the following alteration of the in-

strument.

In the original gyrovertical design the pendulum, suspended on its gim-

bals, is connected !by means of the latitude-carriage pin with the support-

ing cup and the stator; these have their own suspension. A deviation of the

pendulum center line from the instrument axis therefore causes an identical
deviation of the stator axis.

Consider a rod-shaped lever one of whose extremities is hinged by

means of a ball-and-socket connection G to a stabilized ring (Figure 107)

while the other extremity is hinged by means of a sliding ball-and-socket

connection K to the pin of the latitude carriage mounted on the pendulum. Let

the stator also be hinged to the rod by means of another sliding ball-and-
socket connection _ Let the distance between the centers of G and S be 1/n

times the distance between the centers of G and K.

Draw lines connecting the centers of these points with the center of the

gyrosphere, and produce them until they intersect with the horizontal
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plane 2_ (Figure 108). The points of intersection will be designated by .

the same letters G, S, and K as the corresponding connecting points. The

coordinates of point G are obviously x and y, since the stabilized ring fol-

lows the motion of the gyrosphere. The coordinates of point Sate } and

_], in accordance with the notation adopted above. The coordinates of point

Kate denoted by a and x.

If the coordinates of point M (the intersection of the pendulum line with

the Zg plane) are as before denoted by • and [3, the following relationships

will obtain between the coordinates of points K and M:

,=_lt_v. (388)

Here u and v define the position of the latitude carriage pin relative to

the pendulum line and enable the infuence of the Earth's rotation on the

equilibrium position of the gyrosphere axis to be eliminated.

z

R

FIGURE 107 FIGURE 108

Points S and K coincide in an instrument without an additional lever

system, i.e., n-----t, aand v being determined by (370) for the condition that

the z-axis points to the east.

The following proportion, accurate to first-order infinitesimals, fol-

lows from the theory of similar triangles (Figures 108 and 109):

Using (389), equations (366) can be written

--H _yU sin ?-{--U cos ? --'kit z . . ,

--H('_f"]-zU sin _) =-kH v-[_-°_ _pH z-'-a,,

(390)
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If u and v are chosen so as to satisfy the equations

Ueos ?-_ tn-I- _,
t

0_--- pa--tv
It t

then equations (390) can be reduced to

dx

_T-I-±z-F( z-Usin _v=±,+ _P,
,t \n / it

dy k p
"t- _- Y-- ('-K-- U sin ?_z---_--'t _3-- p-'_"/ m a

(391)

(392)

Equations (392) differ from (374) only in that the parameters k and p have

been replaced by magnitudes n times smaller; this is equivalent to saying

that the influence of the pendulum's sway on the gyrosphere (the correc-

tion) has become less. The instrument error during rolling will obviously

be reduced by exactly the same factor, and (387) should be replaced by

a_- _ v"_'i-I-_ Oo" (393)

If n = 8 for the same values of I_,l, k, p, and 00 as before, then a=

=0.000140; this corresponds to an error of about half aminute of arc.

W
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FIGURE: 109
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FIGURE 110

By comparing (391) and (369) we find that the deviations - and v in the

eastern and northern directions must now be n times larger than before.

For n= 8, the total angle of deviation, s, where

,-._ nU eos_ (394)

(by analogy to (371)), is about 1.5 °.

To obtain the same result, different lever arrangements could be pro-

posed, all causing a :suitable change of u and v. For instance, the latitude

carriage could be placed on the stabilized ring or connected to the stator.

If the latitude carriage is placed on the stabilized ring, then (Figure 110)

_--e -- _--, SE t
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where

_=y-Fv.

The following relationships are easily derived:

(396)

n m

v--_ .--i
Y_ m s V,

(397)

Using them, equations (366) can be transformed into a form similar to

(390), and then, by suitably selecting u and v, into a form similar to (392).

Until now it was assumed that the ship maintains a constant course and,

in addition, that the component of the angular velocity of the system xyz,

caused by the ship's motion on the curved surface of the Earth, could be

neglected. This component is horizontal and directed to port perpendicular

to vector F (Figure 111); its value is equal to the ratio of the ship's speed

F" to the Earth's radius.

Consider now the general case of a ship's motion. Since for n = 1 the

scheme is equivalent to that of a gyrosphere without additional lever ar-

rangement, we can write the equations of motion for an arbitrary value of _.

Z

e I z

i I\s
FIGURE 111 FIGURE 112

Let , be the ship's course*. The y-axis of the coordinate system zyz is

parallel to the ship's course line. The projections of the angular velocity

of the trihedron zyz (Figure 112) on the axes z, y, z are respectively,

mm_U COS? sin ._ Y Cos_,

V
t%--_ U cos ? cos z _-_- sin _, (398)

w,-_ U sin ? -lt-,,,

where a is the drift angle (Figure 113), and _, the speed of the ship's

* The ship's course has already been defined in Chapter I, § ] (see p. 10).

126



"rofation, connectedwith thecourseby therelationship

w----- _-. (399)

Theship'sroll haspracticallynoinfluenceonthemeanpositionof the
gyrosphereaxis. It will thereforebeneglected.

Thetangentialandnormalaccelerationof thepointontheshipat which
theinstrumentis locatedare (Figure113):

$V
w, _--_-_- (400)

W. _ (w nu _') v- (401)
d0

The projections of the total translational acceleration of the pendulum's

center of suspension on the z- and y-axes are therefore

w,=--_Tsin_-- t.-_-_ VcosS,

(40 2)

,v ( ,5)w_= -_T cosS-- _e-3t- _ Vsin 8.

Due to inertia, the position of the pendulum deviates from the vertical during

translational motion. The coordinates a and _ of point M, defining the pen-
dulum's position in the coordinate system zyz, are approximately

W2a_----- _ w_/_ (403)
g' g

The displacements u and v of the latitude carriage pin, determined by

(391), take place in the eastern and northern directions respectively

)- a:

N

S

FIGURE 113 FIGURE 114

(Figure 114). The corresponding displacements -, and u_ in the directions

of the z- and y-axes are

_s:U COS x--os]n X,

u_ = u stn x -lL v cos x.
(404)
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Using(398),equations(357)canbewrittenin theform

dz Y R--V" _]_---Ms,--H F_i -- (_ Jr- U sin cp) -I- U cos cpcos x-- sm

(405)
V_,,[,_+(o+,.,,,.+=+uoo,,.,..+_-oo.q=M,.

The expressions for M. and My are of the same form as the right-hand

sides of (390) if u and v are replaced by u s and ar The following expres-
sions can therefore be written:

,,- ,,.)+'(,,-'-,-.,)1.Ms=HL _ --'-i-- -_ S
(406)

P

in which a and _ have been substituted from (403).

We insert (406) into (405). After simplification the following equations

are obtained with the aid of (391) and (404):

,,. ,, (o+,.,.,.,__) ,' • .-,.°.-,',,]i -[--_x-- Y--_ R-sm°'l--_ -'l- -s '
(407)

Using (402), the following differential equations are finatW obtained

for the motion of the gyrosphere axis with an arbitrary motion of the

ship:

,,"-"+_=_(°+u,,o,_ b,=
V sin_.lt_ k_g dV d8=_- ., L ,,,:.._-,o+_,,,oo%-1-

, r""oo,,_(°+_4)vs,nq,_L_-
(408)

,iva__..t_ _._9 --F (w -I - U sin _-- _) z _-_

v _+ I, F,_V ,_=- _oo, _,L-_"'_--('+_)"s'"q--
,,.,,-(.+_,),,.,o,,[__ ,, ,].

Only ordinary turns will be considered at this stage. In this case the

linear velocity For the ship, its angular velocity w, and the drift angle 8
are constant. We shall neglect UsinTas being small compared with w.

.Equations (408) then become

___.--_, -_-)v=_-sin_--_Vcos_ -r sin_,

dy , k --1

This system of two differential equations is equivalent to the following
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linear differential equation in the complex variable Z----Z_-|y

The solution of this equation is

,=c - l-:

(410)

(41 1)k

which consists of two terms. The first is determined by the initial motion

and decreases with time, while the second represents the limiting equi-

librium position of the gyrosphere axis relative to the coordinate system

xyz, rotating about the vertical z-axis together with the ship.

The modulus of this second term

k! -I-_p--_-_'1 (412)

defines the error in the readings of the true vertical during ordinary turns.

The errors for right or left turns at the same absolute angular velocity

are different. Take for instance V = 20 m/sec (about 40 knots) and lto[=

= 0.01 sec -I (corresponding to 10.5 rain for a 360 ° turn at a radius of 2000m).

For a left turn (w_>0)

0"--I°5 ' for n--1 and 0_---t0 e for n-----8,

for a right turn (to<'O)

0=:44' for n-----I and 0=9' for n=8.

The turn for which the steady deviation of the gyrosphere axis from the

vertical is a maximum is called resonance turn. The angular velocity u,

at a resonance turn (rt= I) and the corresponding deviation 0rof the gyro-

sphere axis from the vertical are approximately

#+i,

(413)

0,.-_ p_+k2 V
k 4r"

These values can be obtained from (412) by neglecting the term containing

the Earth's radius R, and then finding the maximum for 8.
The following results are obtained using the values of p, k, and V as-

sumed before:

_. ---- 0.0274 sec - 1,0. _- 1°24 '.

The error is of the same order of magnitude if the ship's speed is in-

creased or reduced on a straight course. The corresponding equations of

motion are obtained by inserting n--.._t, _0----_0, _--0 into (408). The fol-

lowing system of differential equations is obtained by neglecting again
V

Using, small in comparison with p, and also the angular velocity -_:

_ + kz + py = p ,,v_ , (414)
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av --/--ky -- k dv-_ _ pz --_ --_ --d[ . (414)

This system is equivalent to the following differential equation in the com-

plex variable z:

dz I (k -- _p) dv
,t-int- (k- l'°) z = t _t (z=z-l-iv). (415)

Bulgakov's methods of analyzing this equation and of the maximum pos-

sible deviation of the gyrosphere axis will not be given in detail here*.

Instead, an approximate calculation, assuming that the ship is uniformly

accelerated, will be carried out.

If the ship is accelerated at a uniform rate during time T [from a stop]

to a maximum velocity V_, the following expression is obtained by inter-

grating (415) for t_T with the initial condition z(0)--_0:

(t)Z

It follows that the maximum deviation of the gyrosphere axis is of

the same order of magnitude as the deviation of the pendulum

0.-----_. (417)

For V_ = 20 m/see and T= 2 min this gives 0m= 0.01700 (58').
These calculations show that if no special measures are taken, the er-

rors in the instrument readings may reach unacceptable values when the
ship manoeuvers.

In practice, the so-called "correction elimination" is frequently applied:

before the ship begins to manoeuver the gyrovertical pendulum is fixed by

clamps relative to the stabilized ring in such a manner that the pendulum

line and the axis of the ring coincide.

Experience shows that this procedure causes considerable error.

The lever arrangement described above does reduce the instrument

errors during manoeuvers, though not completely. The method of eliminat-

ing the instrument errors by artificially inclining the stator axis through

an angle proportional to the ship's speed, corrections {also proportional to

this speed) being automatically introduced in the instrument readings, is

therefore of interest**. The necessity for log readings and the impossi-

bility of completely eliminating the instrument errors without complications

due to the drift angle are drawbacks. This is further aggravated by our im-

perfect knowledge of the laws of variation of the drift angle.

Consider the case when in addition to the displacement undergone by the

latitude carriage there is an additional displacement of its pin caused by an

attachment connected to the log, so that the coordinates of point K on the 2g

plane increase by aVand bF respectively (a and b are coefficients that have

to be determined).

* Bulgakov, B.V. O nakoplenii vozushchenii v lineinykh kolebatel'nykh sistemakh s postoyannymi

parametrami (Cumulative Perturbations in Linear Oscillatory Systems with Constant Parameters).--

Doklady Akademii Nauk SSSR, Vol. 51, No. 5. 1946.

** This can be compared with the method of compensating the gyro-pendulum ballistic errors and with

the method of introducing an additional gyrohorizon with a variable angular momentum for compensa-

ring the inertia forces of the translational motion by gyroscopic forces (cf. below § 3). Thee methods

were proposed by V. I. Kuznetsov, Ya. N. Reutenberg, etc.

130



ThemomentsMaand M_are in this case (by analogy with (406)):

(418)

Inserting (418) into the differential equations (405) yields, after simplifi-

cations similar to those made in the derivation of equations (407), the fol-

lowing system of differential equations describing the motion of the gyro-
sphere axis :

,- _._(o _),=a-74- 4- U sin _ --

V sinS--_ k -_-aV) _(-_--_-bV).=_- -_(_ + P "_

dild__i_3t__ y_3t_ (e____ U sin ?-- P)z= (419)

v _ J" P .-I-aV)= --T c°s_+_-(_ +bV)--¥ (_ _•

Equations (419) hold, as equations (408), for any law of variation of the

ship's speed Vand its angular velocity w.

Assume that the ,drift angle 8 =0. Equations (402) then become

d¥

Wm= _wV, w t, = _ • (420)

This also follows directly from the formulas on the motion of a particle.

In this case equations (419) become

e___Co__) *,-_ ,,- _).d,--, = v= _t-- V + _v)+ _(? _ +
(421)

dl/ k p V k i dV p wV_+_' +('-_) _-_ +_Ci_ +_)+_(T-'_)•
The terms containing the vertical component Usin_ of the Earth's angu=

lar velocity have been neglected in (421) for the reasons given above.

Equations (421) form a system of linear differential equations with vari=

able coefficients. "]'he general solution of such a system is the sum of the

general solution of the corresponding homogeneous system

(422)
dy k,7+_v+(o-_)==o

and of some particu:tar solutions of the nonhomogeneous system (421). The

solution of equations (422) can be represented in a complex form similar to

(377)
t

t--iP t-i_fl

z---Ce -; e (z=z-_-iy), (423)

where C is an arbitrary complex constant.

The modulus of the complex function z tends to zero with time independ-
ently of the value of C.
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It canbeshownthat
--/s ]Z (424)

z__n/_e V, y _ ,

are a particular solution of the nonhomogeneous system (421), provided the
coefficients a and b are suitably selected. In fact, inserting (424) into the

left-hand sides of (421) yields

2 PI_-_ka-_-pb,
ng (425)

n ks -- p, _ kb -- pa,-ff -F "t

which can be considered as two equations with two variables a and b. Their

solution is

-,, ](k t 4. pt) R '
(426)

n't ].+ ,k.+..,.
For n=| and the same values of k and p:

a -- 0.001N_ sec / m ,

b =0.00t033 sec/m.

At V = 20 m/see (40 knots) the stator is inclined by the following addi-

tional angles to starboard (in the positive x-direction) and forward (in the

positive v-direction):

aV = 0.00876 (aft), bV -- 0.0207 (t °t t').

The gyrosphere axis is inclined by the following angles to starboard

and forward :

P--V-V = 0.00888 (3t'), k___v= 0.02041tot0').
r I

It is thus seen that if the values of the angles given by (424) are auto-

matically subtracted from the instrument indications with the aid of an

attachment connected to the log, the instrument will indicate the true verti-

cal also when the ship manoeuvers provided the drift angle is zero.

The latitude carriage pin is always displaced under the same angle to

the ship's course line.

The attachment to effect this displacement can be located not only on

the pendulum, as assumed above, but also on the stator or on the stabilized

ring. The values of the coefficients in (424), and of aand b vary accord-

ingly.
Assume that the drift angle is not zero. For a steady turn, even if

cos_ _ ',

terms containing sinS-----_ will appear on the right-hand sides of (421), as

follows from (409), and their influence cannot be neglected. These terms

occur because the component of the centrifugal force parallel to the ship's

course line acts on the pendulum during the turn. If the drift angle is small,

the errors due to these terms will be a fraction of the total error of the

instrument during turns without the correction elimination calculated above.

Thus the error for a drift angle of 6 ° is of the order of 6--7 minutes of arc,

the linear and angular velocities of the ship being as before.
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Theerror duringturnsdueto drift becomescomparativelysmall if the
instrumentis equippedwitha lever attachment.In this case,however,the
vertical component Usin ? of the Earth's angular velocity in equations (408)

P during an increase or re-can no longer be neglected in comparison with -_-

duction of the ship's speed on a straight course. In fact, at 60 ° latitude and

for n= 8 :

Usin _m_0.0000628 sec-' _0.000545sec-'.
'

It is thus seen that the influence of the terms in (409) caused by the iner-

tia force is only partially eliminated in the case of drift.

The laws of variation of the drift angle are imperfectly known, as al-

ready mentioned, and only certain assumptions can be made about them.

One meriting attention is a direct proportionality

_---CW (427)

between the drift angle _ and the angular velocity w, the coefficient cde-

pending on the hydrodynamic properties of the ship.

Relationship (427) can be used for further improvements of the instru-

ment, such as by an additional rotation of the stator relative to the z- and

v-axes depending on the direction of the velocity of the point at which the

gyroscopic instrument is located in relation to the ship's course line. In

this case the accuracy of eliminating the instrument errors caused by the

inertia forces appearing during the ship's manoeuvers will depend only on

the accuracy of the ?.og. We will not discuss this point further.

In conclusion, the principle of aerodynamic suspension can be used for

developing new gyroscopic devices such as a gyroscopic pendulum with

Schuler-Bulgakov period (84.4 rain) which is free from so-called ballistic

deviations (deviations caused by the inertia forces of the translational

motion).

A combination of two such pendulums, with gyrospheres rotating in

different directions, makes it possible to eliminate also the velocity devia-

tions during manoeuvers and to determine (at present inaccurately because

the instruments do not yet give satisfactory performance) the velocity with

which the ship or any other object on the Earth's surface moves (the so-

called absolute log).

Since in the absence of a latitude carriage the gyrosphere axis deviates

from the vertical in a direction determined by the compass and depending

only on the latitude, it is possible in practice to design a gyrolatitude with

simultaneous indication of the ship's course.

A perfect directional gyro with horizontal rotation of the gyrosphere

can be designed.
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§ 3. Gyrovertical with auxiliary gyro

Two contradictory technical problems have to be solved when gyroscopic

devices such as the gyrovertical are being designed. The first consists

in the selection of sufficiently effective attachments which will orient the

gyros in space to a position in which the instruments will indicate the true

local vertical.

Without such so-called correcting attachments, the gyros if left to them-

selves, will change their orientation very rapidly within excessively wide

limits, even when suspensions of the highest quality are used. This is

mainly due to the friction in the bearings of the gyro suspension during the

oscillations of the object on which the gyroscopic device is mounted.

The attachments used are pendulums of various types which either act

directly on the gyros, as in the scheme described below, or control sole-

noids which apply moments to the gyros in the necessary direction. Other

correction methods also exist. Obwousiy the attachments function only

so long as the moments which they apply to the gyro are greater than the

frictional moments in the bearings of the suspension. In addition, the ac-

tion of the corrective attachments on the gyro is restricted by the friction

in the bearings of the corresponding pendulums. Pendulums with a suffici-

ently large moment of inertia are to be used in order to overcome the in-

fluence of the friction forces.

The second problem is to eliminate the influence of the corrective at-

tachments on the gyros during manoeuvers. In general, the manoeuvering

accelerations are small, but due to the duration of manoeuvering the gyros

change their orientation considerably because the corrective pendulums re-
act to these accelerations. This influence increases with the moments of

inertia of the pendulum in the case of linear-type corrective devices (such

as the device described below). Finally, excessive linear correction leads

to large instrument errors during rolling. Corrective devices of the non-

linear type have their own shortcomings, in particular during rolling (cf.

Chapter VI, § i).

The availability of a log on the ship and the possibility of feeding its data

to the gyroscopic instruments by means of a synchronous link have made it

possible to work out schemes for additional attachments so as to avoid the

errors of gyroverticals during manoeuvers. The theory of such a device

for a gyrovertical with aerodynamic suspension was given in § 2 of this
chapter.

Another similar device is described below. Its peculiarity lies in the

fact that no corrections proportional to the velocity have to be introduced

in the readings of the instrument itself in order to obtain the true vertical.

The appearance of a drift angle during turns interferes with the proper

functioning of this device.

Consider a gyroscopic system (Figure 115) whose basic gyro has a

vertical axis and is suspended in gimbals from a so-called stabilized ring".'.

The perpendicular to the plane of the stabilized ring is made to move to-

gether with the axis of the basic gyro by means of follow-up systems; the

ring itself is the inner gimbal ring of a bicardan suspension (Figure 7).

The bearings of two upward -turned pendulums, connected by angular levers

and hinges to the basic gyro housing, are mounted on the stabilized ring. The

* The gimbals of the basic gyro and the stabilized ring are not shown on Figure 115.
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functionofthese pendulums is to force the axis of the basic gyro into the
Vertical.

The housing of an additional gyro, whose rotor axis is perpendicular to
the axis of the basic gyro (and therefore horizontal when the instrument

indicates the true vertical), is rigidly connected to the housing of the basic

gyro. The function of the additional gyro is to counterbalance the influence
on the basic gyro of the corrective pendulums and of the mass of the two

gyros during manoeuvers. Thus the axis of the additional gyro rotor is

oriented at a specified angle _-- _ toward the direction ¥ of the ship's

course line, and the angular velocity of its rotor is varied in proportion to
the ship's speed V.

z
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FIGURE115 FIGURE116

To obtain the equations of motion of the gyroscopic device, we introduce

a moving reference frame alrz with vertical s-axis, and F-axis parallel to
the ship's course line (Figure 116).

As in § 2, a horizontal plane 2_ lies at unit distance from the center of
the gimbal system of the gyros. Let G be the intersection of the axis of the

basic gyro with the 2y plane, z and y being the abscissa and ordinate of this
point respectively.

The equations of motion of the axis of the basic gyro can be written,
similarly to (405),

V

Here H is the angular momentum of the basic gyro, directed upward (the
rotor of the basic _ro rotates counterclockwise when viewed from above);

M e and M U are the moments about the ¢- and y-axes imposed on the housing
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of the basic gyro by the corrective pendulums together with the frictional

moments, the moments of the so-called latitude correction and, in addi-"

tion, the moments due to gravity and the translational inertia of the gyros (in

case their center of mass does not coincide with the center of its gimbal

system); m. and m W are the moments about the same axes due to the effect
of the inertia of the additional gyro on the basic gyro. The remaining nota-

tion remains as in § 2 of this chapter. The magnitudes z and y in (428) are

small compared with unity.

The frictional moments at the pivots of the basic-gyro gimbals are of

the order of several gcm when high-quality bearings are used, and may

vary during operation within wide limits due to various random factors

(position of the bearing balls, dust, lubrication, temperature, etc).

Under these conditions there is no sense in retaining in equations (428}

the terms containing the vertical component Usiu.? of the Earth's angular

V
velocity and the angular velocity _- due to the curvature of the Earth's

globe.

Assume the angular momentum of the basic gyro to be H=540000gcmsec,

and let the gyro axis deviate from the vertical by half a degree to the south.

T
N

_Z

F[GUR£ 117

It follows that at a latitude of 60 °.

HUysin ?_-0.3 gcm.

If the ship's speed isV= 20 m/sec (40 knots), then

H _----_ t.7 gcm.

These terms are therefore of the order of the accuracy with which the

values of the frictional moments are given, and can be neglected in equa-
tions (428).

The terms containing the horizontal component Uc0s _ of the Earth's

angular velocity can be eliminated from (428) by adopting special measures

for cancelling the effect of this component on the basic gyro. Thus moments

M ; -- H U cos ? cos ,,
(429)

M _ --_- H U cos ? sin ,,
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• can be applied to the housing of the basic gyro by means of a moving load Q*

(or by any other means). The load Q* must be placed on the housing of the

basic gyro in such a way (Figure 117) that it is always at a distance r to

the south of the gimbals center, where

Q'r-_ HU cos ?. (430)

In order to reduce the effect of the load Q* on the basic gyro during

manoeuvers, its center of gravity must lie on the perpendicular to the

rotor axis, passing through the gimbals center.

This load causes terms equal (up to higher order infinitesimals) to the

terms containing the horizontal component Ucos? of the Earth's angular

velocity to appear on the right-hand side of (428). These equations thus
become

(431)

where M. and M w include only the moments due to gravity and the transla-
tional inertia of the gyros, the frictional moments, and the moments im-

posed on the housing of the basic gyro by the corrective pendulums.

We consider now the behavior of the gyroscopic device when the ship

moves on a straight course (_=0) at constant velocity V. In this case, as

will be explained below, mm and my can be taken to be zero. Neglecting for

the present the effect of friction in the bearings of the basic gyro and of the

corrective pendulums (Figure I15), the following equations are obtained:

dz c
H _i--" Pl_ --Qa-$-z,

dV c (432)
H _ = --Plz-- QaT Y"

where P is the weight of the gyros; l, the distance from their center of

mass to the gimbals center; Q, the weight of each corrective pendulum;
a, the distance of the latter's center of mass from its pivots; b, the dis-

tance between the pendulum pivots and the pins of the basic-gyro housing

entering into the slot in the angular levers; c, the distance between the

gimbals center and the angular levers. The pivots of the two pendulums are

located in the plane containing the gimbals center and perpendicular to the
z-axis.

Let the basic gyro deviate to starboard (Figure 118). Point G of the zg

plane will then move a certain distance z from _ in the direction of increas-

ing abscissa (Figure 116). It is obvious that z represents at the same time

the angle by which the axis of the basic gyro deviates from the vertical in

the zz plane. This deviation produces a moment about the y-axis due to

gravity (Figure I18)_ given by

momuP _ -- Pl._. (433 )

The perpendicular to the plane of the stabilized ring moves continuously

with the axis of the basic gyro, and the corrective pendulum, whose pivots

are parallel to the y-axis, will therefore also incline to starboard. A force

Z---_ (434)
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actsthereforeonthegyro-housingpinlocatedonthesideof thenegative .
//-axis (Figure 118). This force is directed upward and creates a moment

about the z-axis equal to

mom.Z ='--Q'--_ Z. (435)

The remaining terms of the right-hand sides of equations (432) can be

found similarly (Figure Ii 9).

d

Z

Qc :_ Z e

FIGURE 118

Z

H V

FIGURE 119

We introduce the parameters k and p, given by

_ac PI
k:b- W and p_-_'.

Inserting these parameters into (432) yields

(436)

_-}-I=--py=0.
(437)

These equations differ from the similar equations of the preceding section

only by the sign of the terms containing p.
The system of differential equations (437) is equivalent to one linear

homogeneous equation

_-_- (k-}-fp)== 0 (438)

of the complex variable

The solution of (438) is

S--z_-_. (439)

• __---_--{J+_, (440 )

where _ is a complex number corresponding to the initial position of G on

the _ plane. According to (440) G moves along a logarithmic spiral (Fig-

ure 120) toward the equilibrium position s = 0, which determines the verti-

cal position of the basic-gyro axis. In the particular case when the center
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' of.massof thegyroscoincideswiththegimbalscenter(p=0), the logarith-
mic spirals degenerateintostraightlines

z --_ _-¢1 (441 )

passing through the origin (Figure 121).
The influence of t:he Coulomb friction on the behavior of this gyroscopic

system will now be taken into account.
Assume that the values of the frictional moments are identical in the

bearings of both gimbals, being equal to P,. The frictional moment in each

bearing of the pendulum suspensions will be denoted by F I. The signs of the

frictional moments in the equations of motion of the system are determined

by the direction of the angular velocities of the stabilized ring relative to

the basic gyro. These angular velocities are caused by the follow-up sys-

tems which constantly align the stabilized-ring axis of symmetry with the

axis of the basic gyro. We denote by E and _ the coordinates of the inter-

section C between the axis of symmetry of the stabilized ring and the Z_

plane (Figure 122). The differences

A_-_--_--z and A_]---__--¥ (442)

represent the errors of the follow-up systems. They are essentially de-

termined by the law of motion of the instrument's body or, which is the

z "0

9

FIGURE 120 FIGURE 121

same, of the ship relative to the frame zyz during rolling. Let point K, lo-

cated in the 2y plane and having the coordinates a and _, determine the

position of the instrument's body axis at an arbitrary inclination of the deck.

The differences

a*="--_ and _*_--_] (443)

represent the angles through which the follow-up systems have tilted the

stabilized ring relative to the instrument's body at the given instant. The

conventional follow-up systems (Chapter VI, § 7) have a so-called velocity

(dynamic) error, which can be expressed for comparatively slow motions

of the instrument's 'body caused by the ship's rolling, by

&

A_----_# _-/-(_-- _), (444)
d

where $ is one of the parameters of the follow-up system.
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The values of z and y characterizing the position of the basic-gyro axis

in the frame xyz vary only slowly in comparison with • and _, and can, to a first "

approximation, be considered in (442) and (444) as constant.
Equations (444) will not be analyzed here. We only state that the periodic

variation of • and _ must be accompanied by a periodic variation of the er-

rors A} and AII. As a result the velocities of the stabilized ring relative to

the basic gyro will vary in phase with the rolling.

9

-.--.

FIGURE 122

Assume the error A} to increase. Then, as can be seen from Figure 123,

the stabilized ring, striving to carry with it the basic gyro and the pendulum,

imposes on the housing of the basic gyro moments

F, and ,P| _.-

about the v-axis.

If the error A_ increases (Figure 124), there appear moments

--F, and--#'iT

about the _-axis.

Friction in the suspensions thus leads to the appearance of moments

where

M'= (445)

F=F, _-Fi_. (446)

In addition to the moments due to friction in the suspensions, for AL A_ ;_0,

the housing of the basic gyro is acted upon by additional moments

c
(447)
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these are due to the additional deviations of the corrective pendulums from

the vertical produced by the tilting of the stabilized ring relative to the

basic gyro (Figures 123 and 124). These moments will, however, be neg-

lected because A} and Allare terms of second and third order and have a
mean value of zero.

G C

FIGURE 123 FIGURE 124

When friction in the suspensions is taken into account, the following

equations are obtained instead of (432):

dz e dA
H-if= Pl_--Qa-gz--P*ign_-t ;

dl ¢ dA| (448)
H -_F =--P_ -- Qa T y + ¥,Ig. -_-.

These can be written in complex form, using (436), as

dz
, -_--], (449)

where ] is given by the formula

,F (,'v, (450)

The complex magnitude ] has four possible values

+ [(],-- 12)_- l_, -_-]z)]; -F [if1 -]- ]a) -- | (], --/2)], (451)

where

c

]I----" , ]i---- , (452)
c 2 is ¢ I

(QaT) +(P) (QaT) +(Pl)'

depending on the sign of the relative angular velocities

dA_ day
and --4/-"
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The points ,4, B, C, and D corresponding in the 2 9 plane to the four •

values

A >o >o (h--D +t(h-Fl=)
a >0 <o q,-I-l,)--=(h--D
c <o <0 ---(l, -- l=)-- t (l,-I- /=)
D <0 >o --(1,-t-l=)-f-=(f,--l_)

are the corners of a square (Figure 125).

(453)

FIGURE 125

The solution of (449) consists of expressions of the form

(454)
where C! is a complex constant defined by the initial conditions. Depending

4&E and d&_ (454) corresponds to the motion of point G alongon the signs of-_- --_-,

a logarithmic spiral about one of the points .4, B, C, or D. Since these

signs vary during rolling, point G passes from one logarithmic spiral to

another, approaching one of the points A, B, C, or D (Figure 126).

If the gyros are balanced so that p = 0 in accordance with (436), point G,

once inside square ABCD, will remain inside. It will generally undergo a

random motion along lengths of straight lines passing through the corners

of this square (Figure 127).

It follows that if the gyros are mounted together with the pendulums on

a fixed base, a point G located inside the square ABCD will correspond in

the =g plane to any arbitrary equilibrium position.

Before analyzing the behavior of the gyroscopic device during manoeu-

vers, we shall find what forces act on the basic gyro due to the additional

gyro. Let _l/°= e be a reference frame fixed to the stabilized ring (Figure 128),
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with the _-axis orientedupward,perpendicularto theplaneof thering,
andthe y°-axis pointing forward along the pivot axis of gyro's gimbal ring.

The axis of the basic-gyro rotor will then be oriented along the _-axis if

the errors of the follow-up systems are neglected. We denoteby w_. of, u_.
the projections of the angular velocity of the stabilized ring (or, which is the

same in this case, of the angular velocity of the gyros) on the axes z °, l_, z°.

by h the angular momentum of the additional gyro, and by _ the angle be-

tween the direction of the rotor axis of the additional gyro and the _-axis.

/

%
1'

FIGURE 126 FIGURE 127

The velocity of the vertex of the vector h [the rate of change of h with
dh

respect to time] consists of the vector _-, coinciding in direction with the

vector h, and of a vector determined by the rotation of the frame a_y_ re-

lative to which the vector/_ retains a constant orientation (Figure 129).

The projections of this second vector on the axes _. y0, and _P are

_fh,. -- o,.h_0 = --e.,.h sin _,

w_h_. -- ®,_h_. --- w,.h cos _, (4 5 5)

_'J_v'-- %J_" --_ (ma. sin _-- w_. cos _) h.

According to the theory of gyroscope precession, the following equa-
tions are true:

dk
_0,,h sin _/-J- _/- cos _-_--m,.,

dl.
®,, h cos _ -J- _Tsin _ -- _mf,

(o_esin _ -- w_.cos _) h "- --m_,,
(456)

where m,,.. my.. m_, are the moments which the additional gyro exerts on the

basic gyro. The moment m,. is balanced by the moment of the gimbals re-

action. This moment is directed along the s°-axis perpendicular to both

gimbal rings. The moments m,. and mf are taken up by the basic gyro.

Since the angles between the axes of the system x°y°_ ° and the corresponding

axes of the xyz system are small, the following approximations are true:

m_._ m_, (457)
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(458)"
and

wherewis theangularvelocityof theship.
Inserting(456),(457), and (458) into (431) we obtain

dh

H(_-_-.=)= M.--whcos,--_-s,n _.dh. (459)

Expressions for M, and M Wduring manoeuvers of the ship will now be es-

tablished. This case differs from the preceding in that the gyros and the

corrective pendulums are subjected to translational inertia in addition to

gravity.

go

,l_,0

h

Mz•

FIGURE 128

We assume that the drift angle is zero at the place where the gyroscopic

device is located. In the case of a left turn (w_>0} the following forces will

act along the =- and y-axes (Figure 130):

+_V and P dVE d#" (460)

Similar forces will act on the mass of the corrective pendulums (Figure 130).

When these forces, together with gravity and friction, are taken into ac-

count, the moments acting (in addition to m. and m w) on the basic gyro are
(cf. pp. 138 and 140)

c Pl dV Qe c
M=-_ Ply--Qa-_z I -gwV-_- M_;

I dt (461)
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Inserting(461)into (459)yields
ds Pl dV dh

{Oa e V_hsln_)w.3t.M_,--Ci-T

-i- _ dt dt

where k and p are given by (436). We subject the angular momentum h of

the additional gyro and the angle _ to the following two conditions:

h eos _ = -- P_ V :

hsin _---- 9-9-_e-- V (463)
• b "

Inserting (463) into (462) yields

d_ Z]___ M{" (464)H [_}-nu £T-_- (® nu P)

The physical meaning of (463) is that the moments due to translational

inertia are balanced by the gyroscopic moment of the additional-gyro rotor.

z /#

ff

FIGURE 129 FIGURE 130

This balancing is particularly simple when no corrective pendulums are

used (Figures 131 and 132). The angle _ must then be taken as 180 °, i.e.,

the vector h must point to port, perpendicular to the longitudinal axis of the

ship.

The moment of the centrifugal inertia force _ _V* is balanced by the gyro-
I

P dV
scopic moment oh, and the inertia force -_- _f by the reaction of the gyro

* [This should apparently read -_V, which is the Coriolis force. Similar corrections should be applied
to other relevant formulas. ]
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rotor. Also,
dh r dr}
_-[ --_.-_-, (465')

where I is moment of inertia and O is the angular velocity of the additional

gyro rotor. Thus
h= IQ__--P-_ZV.

g

In the general case we have. as follows from (463):

h= v- V(p:), _,
Q. e (466)

tg_=-- _-_.

and therefore the angle _ must be constant, while the angular momentum h

must be proportional to the ship's speed.

z : 2 V it

FIGURE 131 FIGURE 132

Numerical example. Assume that

Pl=5400gcm, Qa_=4050gcm, V=20 m/sec.

It then follows from (466) that

h----_t3800gcm sec, tg_=--0.750, %_=143°t0 '.

Returning to equations (464), it is obvious that they can be written in a

complex form, exactly as (448):

.,_A_ aA__.A
_-[.-}-[k-_i(p-_-_)]z_-(k-_-ip)]_.-_ , dt /' (467)

where ] is a complex magnitude defined by (450) and depending on the signs

of the rates of change of the error angles in the follow-up systems. In the

particular case w_---O, (467) becomes (449)• In the general case _0, its

solution is similar to (454):

k+,(p+.) /_ d, . _t1" (468)

In this case point G, which defines the position of the basic-gyro axis,

moves along logarithmic spirals, approaching one of the points

/t + _p . t4A| 4A,I
]*= k-{-_(p+.) / _'d'_' _l' (469)
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dependingonthesignof the derivatives _ and _ These points define ad# dr#"

square, just as points A, B, C, D in Figure 125. The sides of this square
are rotated relative to the sides of the square ABCD. The lengths of the

sides of these squares are in the ratio

.__ _/ k_+_ (4701

The dimensions of the squares characterize to a certain extent the in-

strument error due to friction in the suspension.
It follows from (470) that the most unfavorable case will be that of a right

turn at an angular velocity m_m*, where;

u*-- _p. (471)

If k = 0.01 sec -1 and p= 0.0075 sec-*:

i_iI = 1.25, e* ----0.0075 sec -x

These values correspond to a turning radius equal to 2670 m at V= 20m/sec.

The order of the instrument error during an ordinary turn in the case of
#IV

drift will now be found. In this case (Figure 133), _--_0 must be substi-

tuted in (462) and the factor cos_ added to all terms containing the ship's

speed. In addition, the terms

" .v ,m and a
f @

must be added to the right-hand sides, respectively, of the first and second of

equations (462). Assuming the drift angle _ to be sufficiently small, the fol-

lowing approximations are valid: cos _c_|, ain a_8. Taking into account

(463), the following system of two differential equations is finally obtained

[neglecting friction]

(47 2)

Usingthe complex variable s"-z-_-ty, this system is equivalent to one

equation

(473)

For any initial conditions, the solution of this equation tends to the

limit
Z*_ t(k-i-Ip) wW_. (474)

k+_(.+p) g

The modulus 0 of the complex number z* characterizes the order of magnitude

of the instrument error caused by the ship's drift during an ordinary turn.

It follows from (474) that

• m-=_Fa. (475)
--Y *_+ (-+pF
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Let /¢=0.001 sec-*, p=0.0075sec -1, _=-0.01 sec -1, _=12 ° and V="

= 20 m/sec.

Inserting these values into (475) yields

o=o.oo56
For an opposite turn

8=0.0029 (t0').

The large values which are sometimes obtained for 8 make it necessary

to find means to reduce the instrument errors caused by the drift angle.

One method was described in S 2 of this chapter.

z

uJ

FIGURE 133

We shall not analyze the instrument errors during rolling, the errors

caused by inaccuracies in manufacture, or malfunctioning of the follow-

up systems (in particular errors in the log indication). Such an analysis

is not difficult in the general case and should be conducted for each new

instrument design.

§ 4. Theory of the gyroscopic heel equalizer

The preceding two sections of this chapter dealt with the mechanics of

measuring gyroscopic systems (systems which do not influence the orienta-

tion of the moving object). Such systems determine the orientation of the

moving object at any instant, and transmit this information to other devices

by means of follow-up systems.

Gyroscopic systems of a different type also exist. Their function is the

complete or partial stabilization of the moving object (e. g., the rolling

stabilizer and the monorailcar) during its rotations about a specified re-
ference frame.

Contemporary systems (in contrast to those mentioned above) use the

gyros not as stabilizers, but as control elements for rudders, fins or other

components of the moving object. These latter stabilize the object by turn-

ing it in the required direction.
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Thecomplete system of differential equations describing the operation
of Such a device must include, in addition to the equations of motion of the

gyros, also the equations of motion of the object itself, the equations of
motion of the rudders, and in many cases the equations describing the

functioning of additional devices (amplifiers, transformers, etc) whose

function is to ensure the stability of the system as a whole.

In many cases, however, the complete system of differential equations
can be separated into two independent subsystems. In fact, the orientation

of the gyros can be considered as constant when studying transient proces-

ses and the stability of the object's motion, because of the small angular

velocities with which the gyros vary their orientation. Similarly, the ob-

ject's lag during transient processes (connected with the variation of its
orientation caused by the gyros) can be neglected when studying the gyros

motion, since the rate at which these variations proceed are incomparably

higher than that of the gyros' motion. Thus the motion of the object, of the
rudders, and of the additional devices appear in the equations of motion of

the gyro system in the form of servomotor constraints. This procedure will
be adopted when analyzing the gyroscopic heel equalizer. The function of
this device is to reduce the moving object's heel to a minimum by acting on

its control system (Figure 134).

_"T, _/,z,._

'/

FIGURE 134

The error angle between the plane of the gyro's outer gimbal ring and

the object's plane of symmetry will be assumed to be zero (the transient

processes occurring during the reduction of this angle to zero are ignored}.

In its mean (initial} position the gyro rotor (Figure 134) rotates in the

symmetry plane of the moving object in such a way that the velocity of its

upper points is directed along the object's motion.

The outer gimbal-ring pivot axis =1 lies in the plane of symmetry in-

clined toward the side opposed to the object's motion, forming an angle

-_m T with the longitudinal axis of the object.

In the initial position the plane of the outer gimbal ring coincides with

the plane of symmetry of the moving object. When the outer ring is tilted

through an angle a relative to its initial position, the control system forces

the object to rotate so as to reduce this angle.
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In the initial position the plane of the inner gimbal ring is perpendicular

to the plane of the outer ring. When the inner ring is tilted through an

angle _ from its initial position, a correcting moment K(_) is applied to the

outer ring, which causes a precession of the gyro, tending to reduce the

angle _. In particular, this moment can be created by the reaction of air

jets discharged from the body of the outer ring impinging on dampers suit-

ably arranged on the inner gimbal ring. If the angle _ is small, K _8) can

be considered as a linear function:

K(_)-----_, (476)

where k is a constant.

The linear relationship (476) does not apply when the angle _ becomes

large.

Assume in the nonlinear case that the curve of the function K(_) is of

the form represented in Figure 135. The problem does not become too

complicated because of this nonlinearity and will be dealt with in this sec-

tion together with the case of a linear function K (_).

N_

#

FIGURE 135

The cases of more complex forms of the function if@), leading to dif-

ferent types of motion of the gyroscopic systems, are discussed later

(Chapter V, § I).

The inner gimbal ring of the heel equalizer's gyro rotor is connected

rigidly with a weight P (Figure 134). The center of gravity of the weight 2)

lies in the rotor's plane of rotation. It is located at a distance b from the

pivot axis of the outer ring axis and at a distance ¢ from that of the inner

ring. It will be shown later that when the instrument is correctly adjusted

the distances b and ¢ must be connected by the following relationship:

b_---ctg T. (477)

This also means that the geometric center of the gimbals and the center

of gravity of the weight lie on the same vertical, provided, obviously, that

the longitudinal axis of the moving object is horizontal and that the heel is

zero.

The friction in the gimbals axles will be neglected; this assumption is

admissible for this type of device.

When the object turns, its various points have different velocities whose

directions in general do not coincide with the longitudinal axis of the object.

It will be assumed that there is no drift, so that the direction of the linear

velocity of the point where the heel equalizer is located is along the axis of

the moving object whenever the latter turns. The Earth's rotation will also

be neglected.
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The equations describing the motion of the heel equalizer will now be

established. The following five Cartesian frames, with origins at the gim-

bals center, will be adopted:

I. The coordinate system }$_]_0(Figure 136). The _0-axis is directed

vertically upward, and the _]°-axis is parallel to the longitudinal axis of the

object and directed toward the side opposed to the object's motion (the ob-

ject's trim is assumed to be zero). This coordinate system is carried

by the moving object. Its angular velocity relative to the Earth is equal to

the angular velocity _ of the object, the vector being directed along the

_0-axis.

It will be assumed that m_>0 if the object turns to the left (counterclock-

wise when observed from above).

The rotation of the object causes the centrifugal force P--_-uVto act; for

w_>0it acts on the weight P in the negative direction of the _*-axis.

FIGURE 136 FIGURE 187

The object's velocity varies during its maneuvers. The inertia force

P dV is directed along the negative _°-axis. It will be as-
of the weight _ -_

sumed that the effect of this force on the heel equalizer is small and can

be neglected.
2. The coordinate system }z_a_, fixed to the moving object (Figure 137).

The _h-axis coincides with the _*-axis and is therefore parallel to the longi-

tudinal axis of the object. The _l-axis lies in its plane of symmetry.

The angle 0 between the axes _a and _0 is the heel angle of the object.

For 8_>0 the object has a heel to port*.

The direction cosines of the system |z'_*_relative to the system |o.qe_

are:

E, cos 8 0 -- sin e
_h 0 | 0 (478)

r.z sin O 0 cos O

* This is in contrast to Chapter II, § 1. There the heel to starboard was considered as positive.
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The angular velocity vector of the object's heel is directed along the

dO
_0-axis and is equal to _i'"

3. It is convenient to introduce the coordinate system }_ (Figure 138),

also fixed to the object. The }-axis of this system coincides with the }l-

axis. The _-axis deviates from the _1-axis toward the side opposed to the

object's motion by the constant angle "rand coincides with the pivot axis zI of

the gyro's outer gimbal ring (cf. below).

The direction cosines of the system }_ relative to the system }i_]i_are:

! 0 0

0 cos T --sin-f

0 sin T cos T

(479)

From (478) and (479), the direction cosines of the system }%]0_0 relative

to the system }_]_ are:

_o cosO --sin T sin O cost sin 0

_o 0 cos T sin T

t ° --sin 0 --sin_cosO cosTcoeO

(480)

4. The system ZlylZl fixed to the outer gimbal ring (Figure 139). The

_-axis is directed along the pivot axis of the outer gimbal ring and coin-

cides with the _-axis. The yl-axis has the same direction as the y-axis
(cf. below).

_',Z,

'7 z

FIGURE 138 FIGURE 139

The angle of rotation about the zl-axis of the coordinate system xlylz 1 re-

lative to the coordinate system }_ is denoted by E. This angle ,,thus de-

fines the position of the outer gimbal ring relative to the instrument body.

For g_>0, the outer ring is rotated counterclockwise if viewed from above.

The vector of the angular velocity of the outer ring relative to the body has

the direction of the axis _(_) and is equal to _.
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For a=0, the outer ring lies in the plane of symmetry of the moving

object, and the coordinate systems xiFl_ and E_ coincide. In the general

case (a_-0), the cosines of the two systems are related as follows:

z s sos a sin a 0

Fz --sin z sos z 0

0 0 l

(481)

5. Finally, we introduce the coordinate system zy$ fixed to the inner

gimbal ring (Figure 139). The y-axis, which coincides with the ul-axis,

is directed along the pivot axis of the inner ring. The z-axis is directed

along the axis of ro_;ation of the gyro rotor.

In the initial position the plane of the inner ring is perpendicular to the

plane of the outer ring, and the xFz and zly1_ coordinate systems coincide.

In the general case, the inner ring tilts through an angle _ from its initial

position. The angle _ is positive for counterclockwise tilting of the inner

ring about the axis F(Fz) (if viewed from the positive y-axis).

The vector of the angular velocity of the inner relative to the outer ring

,P
is directed along the F-axis and is equal to _-_.

The direction cosines of the system z_ relative to the system z3]_izs are:

z, Ys

z Cos p 0 --sin P

Y 0 t 0 (482)

• slnp 0 eosp

The direction cosines of the system zp relative to the system E_ can

(483)

now be obtained from (481) and (482):

cos • cos p sin • cos p --sin p

--sin a cos • 0

• cosaslnp sln aslnp cosp

It is important to know the direction cosines of the system zys relative

to the system }%1_0; these are found from (480) and (483):

coep seeS-- sine sos p sos 1-- --eose eos_ sine--

--sinp sin 7 -- sine seep sin1 emO--

--sinJl cos T coco

sees sos 7 sine sine--

--toss sinl emO

sin • sin _ cos 1 "J" -- cos a sln [3 sin O

-J- cos _ sin I -- sin • sin 13sin "f sos 0-_

-t-cosp cml _e

(484)

z _e

--sins cosp sin'f sine-

-- sin p _ 1 sin O

Jr --sine tosS-

- _ a sin I sin O

s cos • sin _ cos O--

-- sin • sin p sin "fsin O-I-

--J-Cos_ cOS1 sine

When the rotor rotates as assumed above (the velocities of its upper

points are directed along the object's motion), the vector of the gyro rotor's

angular momentum H is directed along the positive z-axis (Figures 139 and

140).
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Thecoordinatesof thecenterof gravityof theweightP attachedto the
innergimbalring are, in thezys system (Figure 140):

z _--_0; y=b; s-----¢. (485)

In accordance with the theory of gyroscope precession, the equations of

motion of the heel-equalizer gyro will be formed by using the theorem on

the angular momentum of a system (§ 1 of this chapter).

We denote by p, q, and r the projections of the angular velocity of the frame

zyz relative to the Earth. Neglecting the angular velocity of the Earth, and

taking into account that the vector B, of constant magnitude, is invariably

directed along the S-axis, the following expressions are obtained for the

projections on the axes z, g, and z of the velocity of its end point [the com-

ponents of the time derivative of B] (Figure 140):

x.----- e.

M,---_ rR; (486)

M,=--qU.

In accordance with the angular momentum theorem, the magnitudes

Ms, Mw, and iV, represent here the sums of all the moments about the axes

z, U, and z acting on the gyro rotor.

Z

z _ Y,Y_

gu

FIGURE 140

The angular velocity of the zl/s frame is the vector sum of the angular

dl dl dlI
velocities m. _-. _-_, and _r[, directed along the axes t 0, _]0 _, and y re-

spectively (cf. Figures 136, 137, and 139).

From (483) and (484), the following expressions are obtained for the

projections q and r:

do • _ all
q--m (sin = sin O-- eos = sin TCOSO) _ _--Fcos _Tt_,

r = m(--cos s sin [3sin O--sin _ sin [3sin Tcos O-]-cosp c_ T©osO)-j- (487)

•,o _os p sln _)-I- _c, osp.•-1--_-i-(sin • sin p cos "f-f-

154



The angles s, _, and 0 will be assumed to be small. Neglecting all

terms of higher order than the first in these small magnitudes, (487) be-
comes

• . de __ d(D
q =--_ mn I"-%--_- cos "f-t- _--,

de
r=®©_I + _-,i-I-}-_.

(488)

Equations (486) can therefore be written in the form

0-- M,.

d6 • i]a
sm 1[-]- _') = M_,H (® cos "fnu _T (489)

-,(--.ioT+ "°oo. +
The forces acting on the gyro rotor of the heel equalizer that create the

moments M,, M r Mz, consist of the normal reactions of the bearings on

the inner gimbal ring, the effect of friction in these bearings and of the

rotor in the surrounding air, and the forces caused by the blasts from the

nozzles, which tiltthe rotor relative to the inner gimbal ring.

The moment M, is zero at constant angular velocity of the rotor. It

follows that the sum of moments about the z-axis due to friction in the bear-

ings of the rotor shaft, the air blast driving the rotor, and the aerodynamic
resistance to its rotation is zero•

The normal reactions of the bearings create the moments M v and M,,

which have to be determined.

Consider now the forces applied to the inner gimbal ring. These forces
must balance each other, since the inertia of the mass of the two gimbal

rings is not taken into account in the theory of gyroscope precession.

P-,,,v Y'Y'

FIGURE 141

The forces and moraents which must be taken into account are the normal

pressure of the rotor on the bearings in the inner ring which causes mo-

ments -M_ and -M,, the moments due to gravity acting on the weight P
secured to the inner gimbal ring, the moments due to the centrifugal
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force _ mV acting on this weight during rotation, and the moments due _o •
J

the reactions M_, M_, M'_ of the bearings in the outer gimbal ring (Figure
141). The moments due to the reactions of the air jets, the moments caused

by friction during the rotations of the rotor in its bearings, and those due to

the effect on the inner gimbal ring of the surrounding air that is caused to

circulate by the gyro rotor, all act about the z-axis (the rotor axis). The

resultant moment -M_ is generally not zero, since the rotor and the inner
gimbal ring are not enclosed in an air-tight casing, so that not all braking

forces acting on the rotor originate in the inner gimbal ring.

It follows.that the moment -M_ should be considered as negative, its

vector pointing in a direction opposed to that of the angular momentum H

(or, which in the same, opposed to that of the rotor's rotational velocity).

The following equilibrium equations of the inner ring are thus obtained:

_"0_

--M,+ +  om/+ = 0;
(490)

u:-I- momJ +morn, =0.
G

If the moment due to the friction between the inner-ring pivot and the

bearings on the outer ring is neglected, then

_-_0. (491)

If the moment of inertia of the outer ring referred to its axis of rotation

zl(_ ) is neglected, all the forces acting on it are in equilibrium. It follows

that the sum of all the moments about the z_-axis acting on the outer gimbal

ring must be zero.

If friction in the bearings of the outer-ring pivots is neglected, the mo-

ments about the outer-ring pivot axis (Figure 142) are due to the action of

FIGURE 142 FIGURE 143

the inner on the outer ring and to the correcting moment K(_) (see below).

The former are the moments -M_ and -M_. The sum of the projections of

these moments on the z:-axis is (Figure 143):

co, p.

1395 156



Therefore
K (_)--_ M'msin p-- M'_ cos p=O, (4 92)

whence
K (p) (493 )

M;-- M'm tgp-_- _----Tf

or, by the first of equations (490)

M:=(M:--morn.P--mom. "--Pt_-----_ (494)

Inserting (491) into the second, and (494) into the third of equations

(490) yields

M _ = mom_P -J'- mom_ _- * V ,

M . = rnorn,P .-_- morn. p mV .-_- (495)

P mV)t_o . K(_)-1- ( M : -- rnom . e -- morn. _ _ P "1" _------'_.

Inserting (495) into the second and third of equations (489)

da
lt(.oos_-_sinT-_--d-f)=mom, P-_-mom, Pmv;

dp p
--H (--., si. _+ _-"¢o,T+ -_) = ,,,om.P+ ,no.,.7 ,.V+ (496)

• ._,_ (P)

The moments about the axes =, y, and z due to gravity and the centri-

fugal force are:

mom.P -._ ItP. -- zP,;

momeP --- zP ,, -- zP .;

mom, P -- zP_ -- liP.;

morn.( Pwv_=ii(Pwv_ --s(Pmv_ ; (497)
x • / x • /z x $ /_

:"_l / xg

,,,ore._E / ki

The coordinates =, y, and z of the center of gravity of the weight P,

are given by (485).

The force P is directed along the negative _°-axis, and the centrifugal

inertia force P wlZ along the negative _-axis.
I

From _484) the projections of these forces on the axes x, U, and z are:

P.----- --P (,--cos atcos p sin 0 -- sin • cos p sin T cos 8 --

-- slnp cos T ¢os_;

P, _ --P (,sin ,, sin 0 -- cos • sin T eos'8); (498 )

P, -------P (.--cos g sin _ sin 0 -- sin g sin p sin T _ 8-_-

+ cospco.7 co.o):
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(-_wV) -=--_ ®V (cos•co6P_ 0--$

-- sin a cos _ sin Tsin O-- sin p cos T sin O);

(49 )

- sin a sin [3sin 7 sin O-f- cos [3cos'f sin 0).

If the angles a, _, and 0 are small,

p, = P (O-J- g sin 7-}- [3cos "f)

P_--_PsinT,

p_=--P cos _,

CP _.V_ P
l,'_- /= ----_-.V, (499)

(tP---wV),= P'V (a']-'sin T)'•

Inserting (499) and (485) into (497), we obtain

mom.P = (--b cos "[-_- c sin "[) P,

mom:,P----c (O+ . sin T-l-[J cosT) P,

mom.P -------b (0 _ _t sin _ -1- _1COST) P,

mom._.V=[--b(p+OcosT)+e(.-FOsJa@l_.V, (500)

mom P.F-.-bl'.V.
e t

Inserting (500) into (496):

• k

=--c (0-{- • s,n T-_ p cos 1)P-i-c _.V,

a, .__{__)_______b(Onu. sin T+ pcos ]) p +_H(--. sin 7 .-_- _ cos (501)

+b--e .v+{g

-- |--b(_ -I--O cos t)-_- c(" -_-0 sin "1')1_- .Ix } t e _ ' K (p)p-r_--- T

Neglecting all terms of higher order than the first in _, p, 0, this be-

comes
dl

-]-c P---.V-- H. cos'f, (502)
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de
H(_- r,c_T+ _)-- [b(e-_. sin_)+ _ sin TIF--

"--bP'F -_ H" sin T-- M_-- E (_). (5021
g

This is a system of two differential equations with three unknown func-

tions of time: g, m, and _. A third equation is given by the rotation of the

object about its longitudinal axis:

i_v= --_ _-+ H (.), (503)

where / is the moment of inertia of the object about its longitudinal axis,

dg
D-_- is the moment due to resistance of the medium to the object's rota-

tion (assumed to be proportional to the rate of variation of the heel angle
d!
_-_), and M(m) is the heel-equalizing moment applied to the object by the

control system.

Strictly speaking, the moment M (m) is connected with the angle • (the

angle between the plane of the outer ring and the object's plane of sym-

metry) by a more complex relationship; this allows for the action of the

control system.

In accordance with the discussion at the beginning of this section, equa-
tion (503) will be replaced by the simplified approximate condition of servo-

motor constraints:

• ---_0. (504)

The physical meaning of (504) is that the object assumes instantaneously

the heel specified by the heel equalizer. The motion of the heel-equalizer

gyro system is obviously incomparably slower than the rotation of the ob-

ject about its longitudinal axis.

Inserting (504) into (502)yields

de . O cos P + (¢ P V -- H eos T) W,S_smT=--c( +p T)

--(b p F-- H sin T)m-- M_-- E (_).

The terms containing the angular velocity m represent the perturbation

forces acting on the heel equalizer when the moving object turns. They

are zero when the following two conditions are simultaneously satisfied:

cP F:Heos T,• b_-V:Hsln T (506)

or

b-_" e t'g T' (507)

H--z-!_V.

It is easily seen that this method of eliminating the influence of turning

is similar to the methods employed in §S 2 and 3 of this chapter.

The first of conditions (507) is identical with (477), and means that the

center of gravity of weight P should be on the same vertical as the gimbals

center when heel and trim of the moving object are zero.
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The second of conditions (507) means that the angular momentum H ()f

the gyro must be proportional to the linear velocity of the object V. Since

the linear velocity of the object varies during turns, the second of condi-

tions (507) can be satisfied only approximately, a mean value of the linear

velocity being assumed.

When conditions (507) are satisfied, (505) becomes:

de

H--_- sin T= -- cP (6-J-J3co6 T),

(508)dO
H ( T+ )= cP(0+ pco,T)tgT-- M:p--X

In addition, M a'_ can be neglected since its magnitude is considerably

less than that of the correcting moment K (_).

The case when _ is small will be examined first, and expression (476)

for K_) will be assumed to be valid. The following equations are then

obtaine d:

Hsin 7 d_
." dt = --(O"I-PC°8_)'

k

-_- _-_- cos'_-_

To simplify (509), we introduce the dimensionless time

eP

Then

(509)

(510)

dO dO d_ cP dO d_ ¢P d_
d---_-_-_ -_-_---B----_'_ d---_'' -_---Hsin_ -d_-," (511)

Inserting (511) into (509) gives

dO

_- = --(0-F_ cosT) ,

dO __ d_ sin,_ ksinl R (512)
-J_-c°sT_'-__ =(e-{-p¢°sT) cos_ cp _"

We multiply the first of equations (512) by cos T and add it to the second,

dp | __,, . &sin7
d---_- = _--_- (O-I- p cos _)-- ---_- p, (513)

and define a new variable

_=pcos T. (514)

The differential equations (512) then become:

dO

-_-_= --(e+ 5,);
(515)

where

k sin ;
x=_--. (516)
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_ystem (515) is equivalent to the second-order differential equation

+x _,0 -}-xe=0, (517)

which is obtained by eliminating the variable ? from the second of equations
(515) by means of the substitution

obtained from the first of equations (515).

The general solution of equation (517)is

o (519)
, d|

Here 8o and 80 are the values of 0 and _ for (_'_0) and

I
_--y _(4¢_------_). (520)

We assume that the inner and outer gimbal rings are freed from the locking

device at the instant the heel-equalizer gyro is started, i.e., that

%0_& 0, ?0 _---_C_T'--0, (521)

where 8o is the heel of the moving object at _0.

Thus, from the first of equations (515),

0;--" --0 o, (522)

and (519) becomes

From (518) we obtain

(523)

---_ • (524)

If x<_4, the parameter v is real in accordance with (520). In this case

(523) and (524) determine the motion of a point S along a spiral approaching

the origin of the _ plane asymptotically (Figure 144).

The time derivatiw_s of ? and 8 are obtained from (515) or by direct dif-
ferentiation of (523) and (524):

(525)
-_-d'= --T'_- (©_ + -_ s|. _).

The instants at which ? and e have maximum magnitudes are obtained

by equating the corresponding derivatives to zero. ?, and thus the angle _,

is a maximum at instants _ which are roots of the equation

2v
I4[ ",_n--'_ --_- * (526)

The heel angle 0 is a maximum at instants ¢_ which satisfy the equation

(527)
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Eachsuccessivemaximumof themagnitudeof $ (andalsoof ?) is lesgthan.
theprecedingone by a factor N, where N is given by

N _e'E'. (528)

The dimensionless time interval between successive maxima is

%-- -_- . (529)

The corresponding time interval is, by (510),

H sin7
to-----_,_ (530)

FIGURE 144

Numerical example. Assume thatH=6420 gcmsec, P=495 g,

c=3.7 cm, T=48 °, k=3440 gcm, _=0.209 (12 ° ) and _0=0. By(510), (514),
(516), (520), and (528)--(530);

H 8in T - ,_ on_

x= _ --1.400:

_p= pcost = 0_669p;

I
'= T" _ "}= 0.954;

N = e s, --_9.97.= -_- -_- 3.29 (8 55 sec);

The heel angle decreases to about one tenth during 8.55 sec, while the

angle _, which is proportional to ?, becomes again zero.

Equations (526) and (527) yield in this case

2_ 2,
_v_1=_=t.363 and tgv_s- --------1.363.

It 1L

Their least roots are

• 1--0.984(2.56sec), _s---2.31 (6.00sec).

is a maximum at _s. The value of this maximum is, by (524),

?s--0.423_-----0.08_ and _'---_1 -------0"t320(7°33r)"

The corresponding value of the heel angle 01 is found from (523) or from
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the second differential equation (515)

ez-- 0.t 69 0o--- 0.0353 (_ f' ) .

If 'c---'c=, the heel angle 0 is a minimum, its magnitude being a maximum.

The corresponding values of 0 and T are, by (523) and (524),

e,=-- 0.169e,----0.0_3 (2_.I');_,=0.169e0=0.0_3=-- _

The variation of 0 and ? is shown in Figures 145 and 146.

$2
$

,0

&f

FIGURE 148 FIGURE 146

In the general case, for arbitrary initial values @-:_ and ?:?o at

• ---0, the solution of equations (515) is

---''z[ _-- (_--2)_, --_1= ,in.I,?=e t _°c°s

o=,.-;-, +,'-'),'.-"
(531)

In this case the mo_ion of point S on the ?0 plane has the same spiral

pattern as in the motion described by (523) and (524).

If x_>4, the value of _ is imaginary in accordance with (520). The tri-

gonometric functions in formulas (531) must in this case be replaced by

hyperbolic functions:

? =e--_-, [?ochl_ - (---2) i_,._ ah,,] °
(532)

2)eo--2_ shl,,:].o=.-{-" [oocb _,+ (_-

where the parameter p is given by

!
p.---T _ (533)

The trajectories of the point S corresponding to (532) are shown in

Figure 147. In each of them the point S approaches the origin asymptoti-

cally. All trajectories are tangential to the straight line

(534)

(535)

which is itself a trajectory.

The only exception is the straight line (Figure 147):
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This follows directly by analyzing the differential equation

dO O--I-5P (536}

which can be derived from the system of equations (515). Equation (536)

has a particular form of an equation studied in the theory of differential

equations (case of a mode}. The slopes of the straight lines (534} and (535)

are roots of the equation

x,÷ (2--_)x-l-i=0. (537)

The equations of motion of the gyroscopic heel equalizer will now be

solved for the case when the function K_8) has the form of a broken line

(see Figure 135).

a

FIGURE 147

In this case by neglecting again the term M_ in comparison with the cor-

rective moment K_) in (508) and by carrying out similar transformations,

we obtain the following equations instead of (515):

4|
-_-,=--(0+_),

(538)
4,p

-_-=e + _,-- ,,,(,t),
where m(_)is a function related to K(@) by the relationship:

•. ir (p}
m i?)---_ cosTsinT, ?--_ cos T. (539)

The curve of m(_) differs only in scale from the curve of _'(_) (Figure 135).

Let the initial conditions be _0---0 and %_>0, as before. The motion of

the heel equalizer will in this case be described at the beginning by the

same linear differential equations (515). The solution of these equations

is given by (523) and (524).

When _ exceeds ?e the function m(_) becomes constant and equal to m in

accordance with Figure 148. When this happens, the ensuing variations
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' of T and 0 are described by the equations

d|
-_----- --{0÷ v).

(540)

the initial values being ?---?*, 0---e*. The symbol e* denotes the magnitude

of 0 at the instant at which ? attains the value ?* in accordance with formula
(524). The following inequality must be satisfied at this moment:

-_-_' "-- e* -I- ?* -- z_* ._> O, 1_* _m), 1541)

since otherwise ? will decrease after this instant, as can easily be shown,
and the differential equations (515)will remain valid.

In fact, for ?-- _*_ let

-_.-_ _0. (542)

The subsequent variation of _ is then determined by its second derivative.

-I

FIGURE 148

By the second equation (515):

0=_, ÷(,--t)?.

Inserting (543) into the first of equations (515) gives:

d_
Since -_----0 and ?'--?*_>0 by hypothesis, it follows that

-_0,

which means that ? will decrease.

Let inequality (541) be satisfied, so that equations (540) apply.
solution for any initial conditions of _ and I is easily obtained.
ding both of equations (540) yields

(543)

(544)

(545)

A general
In fact, ad-

dO
--_--_--_ (546)

whence

0-_- 5D'-- -- m_ _- ¢oost. (547)

We define another zero time so that ?---_ ?*, and 0_---0 e for _---0. The
constant in (547) can be found from these initial conditions, and (547)
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becomes

e-J- V: -- s,z_-J-O*-4- V*. (548)

From the first of equations (540) it follows that

a (549)
._- --m'c--(0° _ V*).

which after integration yields

-- (o*--I-v') _-I-O-- ¢,om_t,. (550)

The constant is again found from the initial condition 0:0 e for _:0. Equa-

tions (550) and (548) can then be written in the form

0=-_- - (O*-{-V*),-l- 0".

(551)
B¢2

v= ---I-- -I- (O*-F v* --')':"l- v*-

It is easily seen (cf. Chapter V, § 1) that equations (551) correspond to a

motion of the point S along a parabola in the VO phase plane.

Differentiating the second of equations (551) gives:

_-_ =--m.cn'- O*+ V* m

This derivative is zero at the instant

0*+¢*--n
T'I: n •

at which V attains its maximum

i
_,=-_;_(O*-F V*- m)'-I- Y*.

At this instant the heel angle 0 is

dO
The derivative _-_ in (549) is zero at the instant

(552)

(553)

(554)

(555)

% _ _-_'_-m ' (556)

at which the angle 0 attains its extremum

0,=- _-(0.÷v.)_÷0.,

as follows from (551) and (556). The corresponding value of V is

v,= --0,= _ (O*+ v*)'-- O*.

(557)

(558)

It follows from inequality (541) and the second of equations (551) that ?

increases at the beginning (for small values of _). It then decreases again
m,t

because of the term -----2--. By inserting ?-_?* into the second of equations

(551) the following quadratic equation is obtained:

m,t (559)
+(0* ÷re--m)" =0.
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The first root of this equation is _---0; this gives the instant at which ? and

begin to vary according to the differential equations (540); the second
root is

•o--_ (0"+ v*--m) (560)

which gives the instant after which the system of differential equations

(540) no longer applies. We must then return to the system of differential

equations (515) with suitably altered initial conditions, one of which is

?_---?*. In order to find the initial condition for 0, (560) must be substi-

tuted into the first of equations (551}; this yields

0-" Qa--- 2m--O* -- 25p0. (561)

The following substitutions must therefore be made in (531):

0o_0 a and q*O-'-_ °. (562)

A new time must also be chosen, and the variation of _ must again be found,

since (531) is valid only for

Ivl<v*- (563)

If ? attains the value --?*, then, in accordance with (538) and the curve

of m(?) (Figure 148), the system of differential equations

4!
_z = -- (e + W,

_--_---0-_-_ _- m (5641

must be solved under suitable initial conditions in order to find ? and 8.

It can be shown by carrying out the same operations as were used when

(551} was derived that the solution of (564} is

o= -- _--(oo+ _,), +o ,,
(565)

I11'¢_ __

=T ±( 0°+ 'P°-I-")" + Vo'

where ?o--- __?, and O* are the initial values of ? and O; the time _ is mea-
sured from a new zero.

Equations (565} describe parabolic trajectories of the points S in the _0

plane.

They are valid as long as ? does not again become equal to--?*; after

this equations (515) must be reapplied.

Numerical example. As inthe preceding example (cf. p. 162) we

assume that

x_-l.400; _=0.954; I--48°; t----2.6%

and let the initial heel of the object be 0e = 0.209 (12°} and the initial angle

of deviation of the inner gimbal ring from its mean position ?0--_-0.We also

assume that ?*= 0.0585. This corresponds to _* = 5 (Figure 135), and

m -- =?* "-- 0.08t9.

For 0<_?<_0.0585, _ and O will vary according to (523) and (524).
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Thefollowing numerical values are obtained:

0.00 0.0000 O._Og
0.10 0.0t95 0.188
0.20 0.0363 O.lg
0.3O 0.O500 0.141
0.37 0.05_ 0.t34

The system of differential equations (515) is valid for 0< _*_0.37 (0.96 sec)
after which system (540) applies. The initial conditions are

_* =0.0585, 6" =0.t34.

Formulas (551) then give 0 and ?. The dimensionless time • is measured
from a new zero.

Applying (551} the following values are obtained:

0.0 0 O585 0.134
0 4 0.0962 0.063
0.8 0.1208 0.006
t.2 0.1322 --0.038
1.6 0.t30"/ --0.069
2.0 0.1159 -0.087
2.4 0.0880 --0.0_
2.7 0.06_ --0._

According to (553} ? attains its maximum at the instant

• 1 = t.35 (3.51 sec)

when, by (554),

71---0.t334.

The maximum deviation of the inner giznbal ring from its mean position is

= _ = 0.t 995 (tto_3

According to (556), the magnitude of heel 0 will be a maximum at the
instant

%=2.35 (6.t2 sec)

when, by (557):

e,= -0.09s (5o20_

To check, we determine by (560) the instant at which ? again becomes

equal to ?=. This happens at

% = 2.70 (7.02 sec).

The corresponding value of 0 is found from (561):

0o= -o.o874 (5oo7,).

The subsequent calculations of ? and 9 must again be done by applying
(515), taking as initial values in (531)

= 0.0585, 0= -- 0.0874.
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Thevaluesobtained:for? and0 are as follows :

¢ y 0

0.0 0.0S85 --0.0874
0.4 0.0204 --0.0708
0.8 --0.004? --0.0495
1.2 .-0.0183 --0.0_9
i.8 --0.0230 --0.0123
2.0 --0.0218 --0.0006
2.4 --0.0174 0.0060
2.8 --O.OJ20 0.0088
3.2 -0.0069 O.OOgO
3.29 --O.Off_ 0.0067

In this case ? does not attain the value rap*. Therefore (531) remains

valid for subsequent values of the dimensionless time. The trajectory cor-

responding to the values of 0 and ? as given by these three tables is shown

in Figure 149.

0.1

|

P

4 :

i\

!

_P

FIGURE 149

Point A(O.O00, 0.209) of this curve corresponds to the initial instant

• _---0. Point B(0.0585, 0.134) corresponds to _*=0.37 (0.96 sec). Point

C(0.0585, -0.874) corresponds to

• * -_ %=3.07 (7.99sec).

Lastly, point D(-0.0059, 0.0087) corresponds to

.¢* -.I- %-t.- % = 6.3S (t6.5 sec).

The study of the heel-equalizer motion in the case when the function K_8)

has a more complex pattern is deferred to Chapter V, § i, as mentioned

at the beginning of this section.

§ 5. The gyroscopic frame

The gyroscopic frame with two gyros (Figure 150) is the basic element

of many modern gyroscopic devices with so-called power stabilization.
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In power stabilization the resistance to rotation of the sensing elements

of the transmitting devices and the friction in the kinematic chains are

directly taken up by the outer gimbal rings of the gyros. The correspond-

ing moments cause the precession of the gyro to one or the other side from

the initial position, this being the position at which the gyro rotor axis is

perpendicular to the plane of the outer gimbal ring.

The stabilizing properties of the gyro decrease with increasing angle of

deviation of the gyro housing from its initial position, until they vanish

when the angle of deviation attains 90 °. An electric motor, or some other

(e.g., hydraulic) device is therefore used for power stabilization, applying

to the outer gimbal ring a moment tending to reduce the angle of precession.

FIGURE 150

The stabilization motor is controlled by a sensing device mounted on the

outer gimbal ring, which records the angles at which gyro housing is tilted

relative to the outer ring.

Because of gyro precession, the angle of deviation increases when an

external moment appears. As a result, an opposing moment acts on the

motor shaft, unloading the gyro and stopping its precession. The stabiliza-

tion motor thus carries out a "supplementary reciprocal aid" for the gyro

(term proposed by N.N. Ostryakov).

The stabilization motor and the comparatively large masses fixed to the

outer gimbal ring of the gyro are frequently responsible for free oscilla-

tions in power-stabilization systems which disturb the normal functioning

of the device. Stability problenls thus play a decisive part in these systems.

The gyroscopic systems proper of indirect (indicating) stabilization de-

vices (such as were examined in 6§ 2 and 3 of this chapter) are completely

stable. The device as a whole may, however, be unstable because of free

oscillations in the follow-up system.

Some questions of the stability of follow-up systems are examined in

Chapter VI, § 7.

This section contains a linear treatment of the stability of gyroscopic

frames. A nonlinear treatment of this problem, which takes into account

the Coulomb friction, is given in Chapter V, § 2.

The gyroscopic frame can be considered as a system of two gyros whose

outer gimbal rings have a common axis }--the so-called stabilization axis

(Figure 151). The axes y' and if of the gyrohousings (or, which is the
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• sai-ne, of their inner gimbal rings} are connected by a four-bar linkage in

such a way that they turn through equal and opposite angles (with an accuracy

of up to high-order infinitesimals}. The rotors of the two gyros rotate in

opposite directions.

We now form by Lagrange's method the equations of motion of the gyro-

scopic frame.

FIGURE 151

We introduce a coordinate system _ fixed to the moving object and, as

in § 1 of this chapter, denote by m_, m_, _c the projections of the angularveloc-
ity of this coordinate system on its own axes (Figure 152}. The |-axis is

the pivot axis of the frame. In the frame itself two coordinate systems

|1_1_1 and |sb_ are fixed, whose axes are respectively parallel. The |x"

and Z-axes coincide with the }-axis, while the _- and b-axes are directed

along the axes of the gyrohousings. The coordinate systems z'y'K and

z'i_ are fixed to the housings, oriented in such a way that the y'-axis coin-

cides with the _h-axis and the _'-axis with the b-axis. The z'- and z'-axes
are directed along the corresponding rotor axes.

We denote by _, the rotation about the }-axis of the coordinate system |1_,

and thus also of the coordinate system |zb_, relative to the coordinate

system }_ fixed to lhe moving object.
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If the rotationaboutthe b-axis of thesystemz'b,'z' relative to the cb-

ordinate system Ez_,_, (i.e., the tilting of the first gyro housing relative to

the frame) is denoted by _, the corresponding angle of tilting of the second

gyro relative to the frame will obviously be --p, due to the four-bar linkage.

To express the kinetic energy of the frame relative to a coordinate sys-

tem having a translational motion (with origin at the gimbals center), we

use (344), (349), and (352) obtained in § 1 of this chapter for a single gyro

with similar arrangement of the axes•

The expressions for the kinetic energy of the housing and rotor of the

second gyro can be obtained from (349) and (352) simply by replacing the

letters _ and 7 by --@ and --_ respectively. The energy of the entire sys-

tem, including the kinetic energy of the motor, is then

r=(½ z_.+ z.. =,s,p+ z..,,., p+ A_,_ + c,m,_) ×

×'""-,--",J"+ +
tt-t _t -- "tl +

+ ({ i_,+ i..',_., p+ z., _,_,p+ A._'p + C_'p) x

X (""_,t sin tt -_ oc cm a}t, (566)

where, in addition to the notation used in § 1, 0 is the moment of inertia

of the rotor and the gear, having a transmission ratio j of the power stabili-

zation motor relative to its axis of rotation; 0' is the moment of inertia of

the rotor relative to the axis perpendicular to the axis of rotation.

Terms which do not contain generalized coordinates or velocities have

been omitted from (566), since the equations of motion do not depend on

them.

Inserting (566) into the Euler-Lagrange equations (354), the following

second-order differential equations are obtained when all terms of higher

order than the first in tt and _ and their time derivatives are neglected:

(it. + 21,,,+ 2A)(__i_tt +._)+ 2C d"t "t d[l-zir p+2c--_-- m- +

+ (--I¢, -- 2I,. -- 2C + I., + 21¢ + 2A) (o_tt -- o_t-- ={=) +

• . d_ dwt __.

2 (I.. + A) _ + 2p (I,,. -- I., + A -- C) (_ -- ,,,_)--

d,,
--2C _-F

(567)

2C _ +" it (P"t)7..t:---.-7/._ = M _
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Theseequationscanbeconsiderably simplified if it is assumed that the

projections of the angular velocity of the frame ml, m,, m.t are also small,
and that the resultant moment M t acting on the rotors* zs zero. This gives

where

J {._,. + d_%.,_ dp d.,_d_ d, j+It_=Mt+IU+t)O--_"

B
d7

H-----2C _--_ coast,

The expression

(568)

I = I_ + 21._ + 2A + l'e;

B--_2(t,,+ ,4).
(569)

_+_,=@ (570)

in equations (568) represents the projection of the absolute angular veloc-

ity wt of the frame on its stabilization axis }. The first two of equations

(568) can therefore be written in the form

(571)

B,r,P

When problems of the accuracy of stabilization are studied in accordance

with the theory of gyroscope precession, the so-called inertial terms

d_.z E
I--_- and B--_,

must be neglected in equations (571).

In the important case

M_'-" O, (572)

where the resistance to the tilting of the gyro housings relative to the

frame can be neglected, the second equation (571) becomes, when

B_-/is omitted,
I

wE ---0. (573)

This means that the projection of the absolute angular velocity of the frame
on its stabilization axis } is zero when the motion of the frame is slow. It

is a relationship of the type of nonholonomic constraints (cf. Chapter II, § 4).

This property of the gyroscopic frame allows it to be used as a direc-

tional gyro. In view of the nonholonomic character of (573), angular dis-

placements of the frame, which may lead to considerable errors when it

is used as a directional stabilizer, appear at an arbitrary motion of its

stabilization axis. This problem was dealt with in detail in Chapter II, § 4

* In order not to complicate the calculations, the equations have been written for gyro rotors linked by
a ttansmimion with a ratio of - L It can be shown that the same equations (568) would be obtained
without this restriction.
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onthebasisof equation(188),whichis, apartfrom thesymbols,identical
withequation(573).

If, in particular, thegyroscopicframeis mountedona ship, thenthe
inclinationof thedeckrelativeto thehorizontalplanewill disturbthestabi-
lizationduringturns. Let theangularvelocityof turningbewandthein-
clinationof the_-axisto thehorizontalplanebe0 (Figure153). Thefol-
lowingexpressionis thenobtainedfor theprojectionof theangularvelocity
of theshipontheframe'saxisof tilting (theangularvelocityof theEarth
is neglected):

ot_wsirJ O" (574)

Inserting (573) and (574) into (570) yields

d_--- m sin O. (575)

The frame will therefore rotate relative to the ship's deck.

e.

FIGURE 158

Gyro horizons are based on a combination of two gyroscopic frames,

and gyroazimuthhorizons (Figure 154) on a combination of three gyro-

scopic frames. In the latter case two frames stabilize the central part

of the instument, which is suspended in gimbals, in the horizontal plane.

The third frame, whose axis is vertical, ensures stabilization in azimuth.

It is possible to adjust the gyro horizon by means of a gyroscopic pen-

dulum (Figure 155) with simultaneous elimination of the influence of the

ship's manoeuvers. The same principle is used as in the device with auxili-

ary gyro (with variable rotational speed) discussed in § 3 of this chapter.

The deviation of the pendulum from the perpendicular toward the plane

of the artificial horizon (the central part of the gyroazimuthhorizon)closes

the contact in electromagnets located on the pivots of the gyro-horizon

frame housings. This produces moments causing the central part of the

instrument to alter its orientation in space in the required direction. The

control characteristic of the electromagnets can be similar to that of a

relay. As will be shown in Chapter VI, § 1, this fact can cause consider-

able instrument errors when the ship rolls.
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If theamplifier lagis neglected,i.e.,
T_0$

(579i

then the following system of linear differential equations has to be solved:

ld_ _ . __ic_,.
dtS _ -- dr-- • "

d_ tla
B _ii --//_T =0;

dl . da

The characteristic determinant of this system is

I Ik t Hk __ i.C.C

g

a (x)-- --Hx B),2 0

iCX _ za+n

(58O)

(581)

-£3&
f dt

FIGURE 155

The following algebraic equation is obtained by expanding this determi-

nant and equating it to zero:

x (aeV+ aaX'+ aeX'+ a,X+ a,) = 0, (582)

where the following notation has been used:

a o-- BIL;

a a _ BIR;

a2-- LIP-_ BloC*.
t ' (583)

a3_ R/P;

Q'4 ---- _ •

Equation (582) has a root k_0, due to the fact that • appears in the

system of differential equations only in its derivatives and is thus deter-

mined except for an arbitrary constant.

The other roots will have negative real parts if the Routh-Hurwitz
criterion

aaa2a$ > aoal -Ji- a_ 4 (584)
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We shall now study the stability of the gyroscopic frame, neglecting

the Coulomb friction in the bearings of the gyro housings and of the frame

itself*. The moment M t in (568) is then the moment applied to the frame by
the stabilizing motor. If the latter is a dc motor with independent excita-

tion, the moment M_ is (in kg):

Mt=i c t, 1576)

where C is the coefficient of the motor counter emf in v sec, g, the gravita-

tional acceleration = 9.8 m sec -2, |, the motor-armature current intensity,

in amp.

FIGURE 1,54

The terms in (568) containing the angular velocity wt represent the

perturbation effects on the gyroscopic frame, and can be omitted when

considering the stability.

of equations (568) become

When (576) is taken into account, the first two

i 4_= -- . 4p . C
_._ -l- a -_--" ! _1;

B4___ .4= fl 1577}

The following two equations should be added to this system:

+ lc-_ .
4_
_7 + v=--_p.

(578)

The first is the equation of the electric circuit of the stabilization motor,
and the second, the simplest equation of an amplifier having a time constant _.

Here v is the electromotive force at the amplifier output; R, the ohmic re-

sistance of the armature circuit; L, the self-induction of this circuit; p,

a factor characterizing the amplification of the entire electric device {pick-

up-amplifier ) creating a tension proportional to the angle _ defining the devi-

ations of the gyro housings from their mean position.

* For an analysis of the influence of the Coulomb friction cf. Chapter V, § 2.
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is satisfiedandif all coefficients_, _, a_ a_ a 4 are positive. The last
dondition is satisfied in this case. We insert the values of the coefficients,

as given by (583), into (584). This yields, after simplifications, the follow-

ing stability condition of the gyroscopic frame:

(58 )
This condition was obtained in 1943 by V.l. Kuznetsov. Unexpectedly,

B, L, and R do not appear. The explanation of this will be given in Chapter

V,_2.
By the first of equations (569):

S__,__C,_.. r_' /C 1586)•.]-21:,-!..2A -l'-'l"_;

Therefore the left-hand side of inequality (585) is a maximum if j attains the
value

]_ __ V l_'_ 2ls "'l- 2Ae " (58'7)

This value was adopted as most advantageous for ensuring the stability of

the gyroscopic frame. This conclusion must, however, be qualified, as the

calculations in Chapter V, § 2 show. The influence of the parameters B, L,

and R on the damping of the free oscillations of the frame will be examined

there by means of the energy method employed in studying the stability of

gyroscopic systems.
When _&0, the stability condition of the gyroscopic frame is more com-

plex than that given by (585)• It was examined in a general form by

Reutenberg.

It is shown in Chapter V, § 2, how approximate frame-stability condi-

tions can be obtained by a simple energy method when the amplifier-lag

is small.

Numerical example. Assume that l_-_21z,.._-2A--4.75kgmsec_;
j=100; e=2.5.10 -5 kgmsec2; B=0.05kgmsec2; H =10kgmsec; F "=10v;

C = 0.50vsec; R = 10 _; L = 0.i h.

The first of equations (569) then gives

I = IE,-{-2/=,+ 2A Jr-l"0 ---5.00 kgm sec'.

The stability condition (585) is satisfied, since

ic _ =t0--t>0.
i B

According to Kuznetsov, the most advantageous transmission ratio j is

C Z_.-'t-2_,., --i-2Aj* = ='_ 436.

A more precise value will be obtained in Chapter V, S 2 (p.197), where

optimum damping will be taken into account. An increasing transmission

ratio is, however, accompanied by an increased amplitude of the forced

oscillations of the gyroscopic frame during the rolling of its base (cf. Chap-

ter V, § 3, p. 206). As a result, selecting the transmission ratio accord-

ing to optimum damping will not always be the correct procedure.
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Chapter V

NONLINEAR PROBLEMS IN THE THEORY

OF GYROSCOPES

§ I. Sliding motions of gyroscopic systems

This section gives a strictly [mathematical] treatment, without any

geometric assumptions, of the so-called sliding motion of mechanical or

similar systems; this is illustrated by the example of the motion of the

gyroscopic heel equalizer of any given moving object. Sliding motion ap-

pears when the forces acting on the system are defined by discontinuous

functions. The point representing the instantaneous position of the system

in the phase space (in the phase plane) "sticks" on a surface (or line) of

force discontinuity, thus reducing the number of degrees of freedom of the

system.
Consider the system of differential equations

dO
_-= --(o-F@;

_=o--,l-,p--m (?),
(588)

which in Chapter IV, S 4 described the motion of the gyroscopic heel equali-

zer of a moving object. In these equations t is the dimensionless time

(previously denoted by _); 0 is the object's heel;. _ a magnitude proportional

to the angle _ through which the inner gimbal ring of the gyro is tilted re-

lative to the outer ring; and ta(?) a function defining the law of variation of

the corrective moment.

The case of a continuous function m(?) (see Figure 148) was discussed in

Chapter IV, §4. The function m(?) in Figure 156 corresponds to the so-

called contact correction without insulating interval; the curve itself re-

presents the limiting case of the curve of Figure 148 for _*--b 0, and there-

fore for
m

x= _---_ ¢o. (589)

The function m(_)in Figure 157 possesses an "insulating interval"

--?*_? _?* in which the corrective moment is zero. This is the 1Lmit-

ing case of the function given in Figure 158 for ?0..,. ?,

Consider first the case when the function m(?) varies according to the

curve in Figure 156. The differential equations (588) can in this case be

written in the form: _--_----- (0_- @),
(590)

-_i+--- e-l.- ? -- raP.sl_ ?.

where _ is different from zero.
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• These differential equations are easily solved if one of the inequalities

?_>0or ?<_0 is satisfied; the solution was given in Chapter IV, $4. It is

easily seen that for ?>0 the solution of system (590) is

O= _--(O,+ ?.) t +Oo,

_--- ---_+(O.+_o-m)t+ _o.

where ?0 and 0e are the initial values of ? and e at t_-0.

assumed that ?0>0.

(591)

It is obviously

m_
m

FIGURE 156

If ?0_0, the sign before m should be reversed in (591).
Assume, for instance, that

?o__-_---I-O. (592)

Solution (591) then becomes

o= -_-o_+Oo;
(593)

?= ---_-F (Oo--m) t.

This solution is valid only for

Oo>m, (594)

since otherwise ? would be negative from the very beginning. ? becomes
zero at

t _ t. _-21_-_ -m) (595)

and is thereafter negative. Solution (593) is therefore invalid for t_t= and

must be replaced by a solution of (590) corresponding to ?<_0. From the
above, such a solution will be of the type

m_
o= --T--OJ-F_

(596)
? =_ -_- (0. --_-m) t,

with initial conditions 0_0o, ?_--0 at instant t---0 of a new time scale.

It is, however, meaningful only for

0o< --m, (597 )
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since otherwise ? would immediately become positive for t_0. Comparing"

(594) and (597) we see that neither (594) nor (596) is valid for initial condi-

tions satisfying the relationships

?e:O" (598)

It follows that certain additional assumptions must be made in order to

solve the problem.

mt_r_ Ire(r)-,.,I "tA

FIGURE 157 FIGURE 158

It will be shown below that if the curve in Figure 156 is considered as

the limiting case (for ?*--_0) of the curve in Figure 148, then the solution

corresponding to initial conditions (598) will be

?-_0, 0--_. (599)

In this case the phase point S, having coordinates ? and 0, slides along

the ordinate (Figure 159) which separates the regions in which solutions

(593) and (596) exist; for this reason the motion defined by (599) is called slid-

ing motion.

The phase trajectories defined by (593) will now be plotted. It will be

shown that all phase trajectories are represented by identical parabolas

with a common axm forming an angle of 135 ° with the ?-axis.

It follows from (593) that

0+ ?-------_ +t,,. (600)

The following equation of the phase trajectory is obtained by eliminating the

time $ from the second equation (593) by means of (600):

?: ---_ (o+? - o.),- _ (0+? - 0_. (6Ol)

This can be reduced to the canonical form of the equation of a parabola

y'=2p=, (602)

by adopting a new system of coordinates with origin at _ (the parabola apex)

having the coordinates

_=_-e.+ T ,

- _ t_ (603)
e=--=+0.+ T

and with the z- and y-axes rotated counterclockwise through an angle of
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135 ° relative to the ?- and 0-axes (Figure 160).

¢t''

and

It follows from (603) that

Then

(604)

m

p =-'_-'-_ • (605)

(606)

For 00)m, (?0-- -_-0), the apexof parabola (601) thus lies on the straight line

(606), while the parabola itself always has the shape defined by (602).

It is thus seen that all phase trajectories in the _ plane can be plotted

by using the same template in accordance with (602) and (605).

The motion of the phase points on any of these trajectories starts from

(_>m, ?0_-Jt-0) in the direction of increasing ? and decreasing 0.
At the instant

--T, (607)

? attains its maximum,

• 1 "-- "k_mm)=, (608 )

in accordance with the second equation (593).

The corresponding value of 0 is obtained from the first equation (593):

0 g m
O== ,--_-- ._L ._.-o (609)

#

t

f

FIGURE 159 FIGURE 160

Also, at the instant

tt --- O__Lom ' (610)

by the first equation (593), the angle 0 reaches its minimum

O=--- o--_" (611)
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The corresponding value of ? is

?s-----00 -_ _ _._. (612)

Lastly, as already stated (p. 179), ? again becomes zero at the instant

the corresponding value of 0 being, by the first equation (593),

0a ______§o.{-2m . (613)

It is easily seen that for 00_'n ,

le.I> m; (614)

for m <_00< _ 3m the corresponding trajectory ends on the ordinate section

--m<O<m. (615)

This last observation is very important for plotting the trajectories of

the phase points in the region of negative values of ?. In this case, i.e.,

for ?d0, the system of differential equations

_=--(0+_),
(616)

d?
_ O'l-'p-- m,

which is valid for +_>0, should be replaced by the system

de

(617)

The system of differential equations (617) becomes identical with system

(616) if ? and 0 are replaced by new variables

_----? and i----_. (618)

All the trajectories in the region _<_0 are therefore obtained from the

trajectories of the region _0_0 by two successive mirror transformations

about the ?- and 0-axes or, which is the same, by rotating the semi-infinite

plane ?_0 through 180 ° about the origin.

A trajectory for which

Oo> 3m, q_o=O, (619)

ends, according to (613), at the point

0o = 2m-- _0<_-- m, _+=0, (620)

and can therefore be continued into the region of positive ?, if

00--_ -_2m -- _o), ?0-_0; (621)

if (619) is taken into account, it is found that 80>m.

All the trajectories starting from points

m <_o<3m , _0=0, (622)
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will end on the section --m<_O<_rn of the ordinate, and cannot be continued

into the region of positive ?. This is because trajectories (593), located in

the region of positive ? and starting at points

m _O,_3m, _0=0,
end on this section.

The motion of the phase point S in the ?0 plane is as follows: The point S

moves clockwise along a spiral curve (Figure 161) consisting of parts of

parabola (602), cutting off sections on the ordinate that successively de-

crease by the magnitude 2m. The motion along the spiral continues until

the last parabolic arc ends at a point of the section ---m¢_0_m of the

ordinate.

!
I

T

FIGURE 161

As already mentioned the subsequent motion requires a special study.

Solution (599) can be obtained formally by substituting ?---_--0 in the first of

equations (616) or (617). In this case

dJ
_--_-----O, (623)

and therefore

0----0o_, (624)

i.e., the heel angle of the moving object will tend asymptotically to zero

for 1o01<m.
A strict reasoning, leading to the same result, starts by considering

the motion defined by equations (590) as the limiting case of the motions

satisfying the equations
dO

=--(o + ?),

_1 =0+?__m(?), (625)

where m(?) is a function of the type shown in Figure 148; in addition it is

assumed that the "linearity zone" of the curve, i.e., the interval (--?*, ?*),

tends to zero.
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Since the function m(_) is continuous, the solution of system (625) de-

fines on the plane _0 (Figure 162) continuous curves with continuously vary-

ing tangents. Each curve is a trajectory of the phase point S having co-

ordinates _ and 0; they define the instantaneous tilting angle of the inner

gimbal ring of the instrument and the object's heel for given values _0 and

Oo at t=O.
With increasing t, the point S tends to the coordinate origin for any

initial conditions. This motion was discussed in detail in Chapter IV, § 4.

P

$ J' e-ktp

s,_ _ e-k,f?

FIGURE 162

Let the initial values _o and 00 be such that point S lies to the left of the

straight line _m._mT* (Figure 162) Then, as follows from (591) after re-

placing m by ram, point S will move along the parabola

_=-_+(o,+_o+m) t+_,,
(626)

0 _ _ mrs-}---- (O.-I- 70)t-l- e,

and will after a certain time reach the straight line ?_--_*, where O as-

sumes the value 0°.

The subsequent motion of point S will satisfy the linear differential equa-

tions (515) considered in Chapter IV, §4; after substituting t for • these

equations can be written in the form

where

(627)

m (628)
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The system of differential equations (627) will be solved under the as-

sumption z--, co. The solution will therefore be of the form (532), and

contain hyperbolic flmctions. It is easily seen that the solution corres-

ponding to the initial conditions 9_-0 °, ?:--T* is

(629)

where
i

= T _/_(_-- 4). (630)

Two cases are then possible depending on the initial value 0°: either

the point S remains in the zone of linearity --T*_T_* and attains the

origin at t-_ _, or the trajectory of the point 8 intersects the straight line

?_?*, the subsequent motion being described by (591) after a suitable

change in the time origin (Figure 162).

The instant t_t 0 at which ? becomes zero and the phase trajectory inter-

sects the ordinate is found, according to the first of equations (629), by

solving the transcendental equation

2_* (631)
th _t 0 _ (_ _ 2) T* + 200 '

which has a positive root to_O if the inequality

2p?* < (z-- 2) ?*-_- 20 ° (632)

is satisfied or, which is the same, if

(633)
If (633) is not satisfied, it can be shown that ? increases monotonically,

with zero as limit, so that the point remains not only in the zone of line-

arity --?* < T <_ T*, but even in the left-hand semi-infinite plane ? < 0.

Assume that ineq,_ality (633) is satisfied. It is then obvious that the

points will leave the zone of linearity --T*<T<?* if (Figure 162)

TIn>T*, (634)

where T. is the maximum value of _ during its variation according to the

first of equations (629).

The maximum of ? is obtained by equating its time derivative to zero;

this is, by (629) and (630),

d? -- _t
(635)

d?
Putting _-[=0, we obtain

th I_t,,=a, (636)

where
(_ -- l) _° + 0°

a=2p (x_ ----_ _ _---_o. (637)

The roots of (636) determine the instants at which T is a maximum. It

is easily seen that a positive root t m always exists: it is sufficient to prove
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that thpt._ I. This last condition is satisfied, since the inequality

2p 1(,-- t) _* + _1 < (_'-- 3,,)_* + _e° (638)

is equivalent to (633), as can be shown by the identity

IL _____2 _2_ (z -- 1) -- (z2_ 3_) (639)•--24L

By substituting (630) into this equation, it can easily be seen that it is an

identity.

The following expression is obtained for the maximum of ? by substitut-

ing t=t,, in the first of formulas (629):

(640)

It is known that hyperbolic functions satisfy the following equations:

cht_t._-_------_, shl_t.._/_-- a,, e-pt'm_
(641)

(a= th pt.).

Condition (634) can therefore be written in the form

• l • I

IL

For large values of z, the ratio _--Vcan be expanded in a series in powers
l

of --:

4--/ 2 6 ....
Similarly

1

(644)

Inserting ?* from (628) and (644) into (637), the expression obtained for

a can be expanded in the series

a_21 t (_-- I) _." +_

--(I 2 2 .. I-F "_"*
• •, • (!__)m.l_e o =

_o ! b

=|-- ..{_lio_ -{-_-_-3 I- .... (645)

where b depends on m and e°.

Inserting (643), (644), (645), and the value of?* from (628) into (642)
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g_ves

1

_- ( 260 t . .)'; +""

_:_! .... [ 22e° I • I -- --

) [ "m.t..Oo _. -I"-.. 2 2
.E ,L_ -- "'"

, )(t_-oo ; t-..)+_ ..

The limit of

,__[_° ! ...-_+°o. +...)÷+

for x-). co is unity, since

t--

(646)

(647)

It follows that

lira ]nz=lim [ t--(In 2e° In x)] -_--0. (648),-,= ,-,.= L _ \ m + O°

]im_ "_-- e° • (649)
t-_mT" nt

The maximum of ? thus satisfies the inequality _.,_?* for O°_m and
sufficiently large va).ues of x. This means that in this case point S enters

in the zone of nonlinearity ?_e.

The time which it takes for the point S to pass through the zone of line-

arity--?*_?_?* is the shorter, the larger x, i.e., the narrower the zone.

In fact, this time is less than t., which by (641) is

t.=--!h _, _'T-_+_. (65o)

Similar calculations show that this expression is zero when z-_ co.

For O°_rn, the phase point S remains in the zone of linearity. In this

case ?=_* according to (649). If (633) is not satisfied, so that ? has no

maximum, the point S will move toward the origin with _ increasing con-
tinuously (Figure 162).

To find the law according to which the point S moves in the zone of line-

arity, consider the limiting case of (629) for x--_ ¢o, replace the hyperbolic

functions by exponential functions, and substitute (628) and (630):

{( ._, .,om '__ _(_--()?=_ + --i •

__(.-2 2_eo ) },,_:-_ +,,,_ +_ [-_-_ ,c,_-,_],,

.-_ 2. ,_[-÷+ _-*,'_],+ (6_1)"=21('+_9___ ) +,._/

-t- [ _(.-_) 0o,.(.v-_;___))' I"
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Since

i _j=--t, (652)+
the following formulas are obtained from (651) when x--_ _:

0___e -t, ?_0. (653)

The same result could have been obtained directly from the differential

equations (627). In fact,

.. 0--_
lim ?--llm --W--_T-__ _ O, (654)

and therefore in the limit

de

-_ =--O, (655)

?_-0,

whence we again obtain formulas (653). This derivation presupposes, how-

ever, that the limit of the solution of a system of differential equations is

So

.r. 5,

FIGURE 163

identical with the solution of the limit system of the same differential equa-

tions. The derivation given in this paragraph is therefore more rigorous.

Numerical example. Let the function m(_)vary according to

Figure 156, where

m_-0.08i8, ?0=0, 60=0.209(t2°).

Since 60_m, the point S will, according to (593), move along the para-

bola SoSISsS . (Figure 163), the function ? reaching its maximum

t -- eo- _ __ t.555
|-- tl --

at the instant

0.0989.
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The following system of differential equations will describe the motion

in the second region of the phase plane:

d0
=--(0+ _),

(657)

_---_,--O-J- ?.

Adding these two equations gives

de d?
_ -[- _-_0. (658)

whence

0 _- _ _- co_t. (659)

The phase curves in the so-called "insulation interval" m?* _?<_?* are

therefore straight lines having a negative slope of 45 ° (Figure 164).

FIGURE 164

Divide the _0 plane into two by the straight line AC

0-_-?=0. (660)

This line bisects the, second and fourth quadrants of the phase plane. The

motion of a phase point will be from left to right above AC, and from right
to left below this line. The points of the bisector are equilibrium points,

since by (657), d_ dO 0

Except for A(?*,--?*), and C (--?*, ?*), all these points are points of un-

stable equilibrium, as is easily seen from Figure 164. Strictly speaking

even the equilibrium at A and C is unstable; it has, however, certain peculi-

arities which will be examined below.

The sections AB and CD, eachof length m, are sliding lines. In fact, the

straight parts of the phase trajectories" of the region --_*<_?<_?* end on

one side of AB, since it lies above AC. On the other hand, it lies below the

line 0--m--? containing, according to (608) and (609), the points of parabo-

las (601) most remote from the ordinate. Therefore the parabolic parts of

the phase trajectories of the ?_?* region also end on AB Thus when the

phase point reaches AB, it remains there.
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THe heel angle at that instant is

At the instant

t.= _==2.$5,

the magnitude 0 of the object's heel reaches its maximum

0,=e,--_=--0._.

The corresponding _alue of _ is

_,= --O,_-_---'=--e,= 0.05_.

Finally, _ again becomes zero at the instant

t.= 2 (h-m) =3.tl.
m

The corresponding value of 0 is

0.= -o.÷ 2m=-o.0_.

Since the values _a_0, 0m_0.0454 define a point inside the section

mm<_0_m of the ordinate, the subsequent motion satisfies the law

I=°f, 5,toO.

It follows that the heel angle at t = 1.00 will be

0= 0f TM =--0.0168(SW).

In this given case the heel angle ° decreases from 0o=0.209 to 0=

= -0.0168 during a dimensionless time

:=3.tt -Jct.00m4.tl

and continues to decrease after this.

Consider now the case when the corrective moment varies according

to Figure 157.

The function m(?) in the system of differential equations (588) is de-

fined in this case by the following equations (Figure 156):

_,>q,*, ,n(?)= ,,,:

--_*<_<_*, m(_)= 0;

_<T*, m (?)=--m. (656)

The ,p0plane consists therefore of three regions:

In the first region, ,p_ ?*, the system of differential equations is of the type

studied above. The phase curves are the parabolas (601) whose common

axis is the straight line (606).

The phase curves in the third region are polar-symmetrical to the phase

curves of the first region, as in the case discussed on p. 182.
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• A detailedstudycanbemadeof theproblemofthe slidingmotionalong
AB as limit, taking into account that the curve in Figure 157 can be con-

sidered as the limiting case of the curve in Figure 158 for ?0_.?e.

This study is carried out in the same way as above but is analytically
simpler.

The motion of a phase point along AB takes place according to the first

of equations (588), in which we put ?---?e:

-_-# = .--._O .._.-$'*), (661)

whence

O= _* -_" (_-_- ?*)e "e. (662)

where 00 is the value of 0 at the beginning of the phase point's motion along
AB.

Point A, having coordinates ?---_$e 0-----?*, is the limit for the motion

described. It defines an equilibrium position of a peculiar character: the

phase point ,._returns to this position after a small deviation from it provided

that this deviation is inside the curvilinear sector J--I (Figure 164). When

the deviations are outside this sector, the phase point moves to the region

__?. <_$ <_$s and then approaches point C asymptotically. Deviations along

AC are exceptions, since all points on it are, as already mentioned, unstable
equilibrium points.

It is thus seen that point A (and also point C) represents a "semistable"

equilibrium position of the system.

#

\
\

p0

FIGURE 165

We now compare the various nonlinear corrections of the heel-equalizer

gyro. Ifm(?)is of the type shown in Figure 148 or 156, the object's heel

tends to zero at the limit. In the case just considered (Figure 157), where

an "insulation interval" exists, the instrument does not bring the moving

object into a position in which its heel is absolutely zero.

Due to the existence of various disturbances, the phase point will be

"knocked out" of the semistable equilibrium positions A and C and move
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forward andbacknearAC;theobject'sheelwill thereforevary in the ,
interval -- _*_ 0_ ?*.

If thecorrectivemomentobeysa morecomplexlaw, suchasthatre-
presentedin Figure 158,withoutdiscontinuitiesin variationof T, the
generalpatternofmotionof thephasepointremainsnearlythesame.
Slidingmotionis in this casereplacedbymotionalongspiral arcsabout
thepointsA andC, whichnowceaseto beeven"semistable".

Thephasetrajectory "coils" aroundAC (Figure 165), each point of which

is an unstable equilibrium point. These points are characterized, however,

by a certain peculiarity which unstable equilibrium points usually do not

possess: At small deviations of the phase point from any equilibrium posi-

tion on ,4C, the phase point bypasses one of the extreme equilibrium posi-

tions A or C and approaches again the "lost" equilibrium position; these

"approaches" are then repeated to infinity, the phase trajectory approach-

ing ,4C asymptotically.

§ 2. Energy method for investigating the stability

of gyroscopic systems

The most common causes of instability in gyroscopic systems are the so-

called artificial forces caused by stabilization motors, corrective devices,

and various amplifiers. In contrast to friction, which as a rule contributes

to the damping of the natural oscillations of the gyroscopic systems, the

artificial forces can "rock" the system by increasing its kinetic energy.

When the parameters of the gyroscopic system approach those values at

which it becomes unstable, the natural oscillations of the systems are usu-

ally similar to nutation-type harmonic oscillations. The work of the arti-

ficial forces and the work of the forces damping the gyroscopic system have

opposite signs and balance each other. The gyroscopic system behaves as

if it were unaffected by external forces, undergoing oscillations similar to

undampened nutations. It can therefore be assumed with sufficient accuracy

that the frequency of oscillations of the gyroscopic system at the stability

threshold equals the frequency of nutations.

These considerations lie at the base of the so-called energy method for

investigating the stability of gyroscopic systems; the application of the

method i_ illustrated below by the example of the motion of a gyroscopic
frame (or monoaxial gyroscopic stabilizer) when the Coulomb friction is

taken into account. A similar procedure can easily be followed also for

other nonlinear forces acting on the gyroscopic systems.

Consider first the problem of the stability of motion of a gyroscopic

frame in the presence of Coulomb friction in its simplest formulation,

namely when the counter emf of the stabilization motor and the transient

processes in the circuit of its armature are neglected together with fric-

tion in the bearings of the gyro housings. When Coulomb friction in the

stabilization axis* is taken into account, the equations of motion of the

gyroscopic frame (Chapter IV, § 5) can then be written in the form

l dt_ -l-. " d_ . . &a
dr, -- n _- _ --_tgn -_- --/¢p, (66 3 )

* Unlike thenotarion used in Chapter IV. §5. the s_abilization axis is denoted now by t.
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d211 - d= ^
B 2r-_--- a 2T = u. (663)

where I is the total moment of inertia of the frame, rotors, and housings

of the gyros with respect to the stabilization axis x, together with the

moments of inertia of the motor rotor and the transmission parts linked

kinematically with the frame, referred to the same axis; B is twice the

moment of inertia of each gyro (housing and rotor) with respect to the

housing axis, together with the referred moments of inertia of the gyro
coupling, solenoids, pick-ups, and other parts of the frame connected to

the gyro housings; H, twice the angular momentum of the gyro rotor; =,

the angle through which frame tilts about z-axis; _, the angle of deviation

of gyros from the mean position; M,, moment of Coulomb friction in the

bearings of the stabilization axis; k, factor of proportionality between _ and

the moment applied to the frame by the stabilization motor (slope of stabili-
zation-moment characteristic).

d= drl_
Multiplying the first of equations (663) by _-, the second by _., and adding:

i d2aS,,.4_Rd_ dl_ M' d= . d= ._ dl
_-_ "_ .-- _- -_- --_----,,, _- stgn _--- K p _. (664)

The kinetic energy of the frame less the constant kinetic energy due to

the rotation of the rotors, is

T 2t_.[1 d=" ,p,= , 0a,
Equation (664) can be written in the form;

dT . 4a . d= 8t
_"i-=--m,o'_'ttgn'_--kP _ • (666)

The stability is therefore determined by the behavior of the right-hand

side of (666). Its first term always satisfies the inequality,

da , 4t _ ^
--M, -_s_gn -_- _.u, (667)

i.e., friction in the bearings of the frame suspension tends to reduce the

kinetic energy of the frame and therefore contributes to the damping of its

oscillations. On the other hand, as will be shown below, the second term

on the right-hand side of (666) contributes to the increase in the kinetic

energy, i.e., causes "rocking" of the frame.

As a first approximation it can therefore be assumed that the motion of

the frame is mainly determined by the system of equations

/ d:= __= 811
-_---r _-_-: O,

. d. ^ (668)
B -T_--- zs _--u.

In other words, it is similar in form to the periodic motion described by

_ =b sin (,t-_- _). (669)

where _ is the angular frequency of nutation of the frame free from fric-

tion in the suspension bearings and from the action of the "artificial"

generalized force ]_. This frequency is
H

v = -_-. (670)
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The oscillation amplitudes of frame and housings are connected by th{)

equation

b---a_, (671)

as is shown by inserting (669) and (670) into (668).
• d_

The influence of the forces ]¢_ and --M_gn.-d-_ during a comparatively

short period, such as one nutation period

7__ 2_y_z (672)
,f

can be assessed by means of (669), in which the amplitudes a and b are

assumed to be constant. Inserting (669) into (666) yields, after omitting 8,

_-_-Tt= sin sin /ruby sint _t. (6 7 3)M.va vt $_gn (-,a _) +

It follows that AT, the variation of the kinetic energy during one nutation

period, is given by

I

aT -_- I [--M _va sin ,t sign (va sin vt) + kab, sinS,t] dr. (674)
0

Integrating this expression gives

_ T --- ----4n M . -[- ,mbk. (675)

If the amplitude b satisfies the inequality

(676)

we conclude that the kinetic energy of the frame and the oscillation ampli-

tude increase; otherwise, the oscillations are damped. It follows that

b* 4M.
--_---1-_ (677)

is the approximate value of the amplitude of unstable periodic motion.

The gyroscopic frame will therefore be stable if the amplitude of the

oscillations of _, caused by any disturbance, does not exceed the value b*.

Such a disturbance may be a constant moment M about the stabilization axis,

suddenly applied to the frame. In order to find the initial amplitude of the

oscillations caused by these moments, friction and the moment caused by
the stabilizing motor will be neglected. The equations of motion of the

gyroscopic frame are then

I --j-B -t- .u -j_- = _,
(678)

The solution of these equations for the initial conditions

da atp n
,,=_=0, _?= _/-=v, (679)
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is of theform
BM

==--_. (t--cos,t),

p--_t-- H_- sin ,t.

It follows from these equations that

, (680)

M
b-- ;-_-, (681)

is the initial oscillation amplitude of the tilting angle of the housings,

caused by the sudden application of a moment M. In accordance with (676),

the frame oscillations will therefore increase if the inequality

x
v-K> .k ,

is satisfied• The magnitude

(682)

Me = 4HtM_. (683)
.k VB!

thus characterizes in a certain sense the frame stability following disturb-

ances by constant moments.

It is possible to draw conclusions from (675) not only on the stability,

but also on the variation with time of the oscillation amplitude of _. The
following approximation of the kinetic energy of the gyroscopic frame is

obtained by inserting (669) into (665) and using (671):

= ½ sin, + (684)T

The variation &T of the kinetic energy during one nutation period is there-

fore approximately

dT 2, n._ db 28
&T __ -_-- %-- --" =,, ,, -_ -;---. (685)

The amplitude b is assumed to be a slowly varying function of time (the

variation of b during a nutation period has till now been neglected in this
section).

The following differential equation is obtained by equating the right-hand

sides of (685) and (675) and expressing a by (671):

4b
2,_Bvb _T =b }/_T (--4M,-I-_b). (686)

Inserting (670) yields after simplifications

db .--4M l 4" z_
= 2,_H " (687)

The variation of b with time can be determined by integrating (687).

We shall now study the gyroscopic frame stability in a more general way,

taking into account transient processes in the circuit of the stabilization

motor armature, its counter emf, and friction in the gyro-housings bearings.

The corresponding differential equations can be obtained by adding to (580)

(Chapter IV, § 5) terms representing the moments due to Coulomb friction

acting about the stabilization axis of the frame and the axes of the gyro
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housings. The following system of equations is then obtained:

z-_- + B =-/-,-- _T,

+ jc-_----_.

In addition to the notation already defined, M_, is the moment due to Coulomb

friction in the bearings of the gyro housings.

Assume, as before, that in this case too the motion is determined mainly

by the system of equations (688), i.e., that motion of the frame during one

or two periods is similar to the harmonic motion described by

_a ¢.08 v|.

_=bsin vt. (689)

Formulas (689) differ from (669) only by the constant _ which determines

the time origin.

Inserting (689) into the third of equations (688) gives

dl
L -_+Rt=(_iC--_)sinvt. (690)

Assuming that the initial transient process in the armature circuit has al-

ready come to an end, we have

l -_- _ajC -- _b sin(vt--,), (691)
RYES'+_,I,,

where

c_t= sins-- (692)
' V_-_+ _-_ "

The validity of (691) is easily shown by direct substitution into (690), using

(692).

d, d_
As before, we multiply the first two of equations (688) by -_- and _ re-

spectively and add, thus obtaining

-_ _ -- Jw .-_ szgn .-_[ - my _ szgn -j_ .-[- -- t _ , (693)

where 2" is the kinetic energy determined by (665). It follows from (689)

and (691) that

It V

da . dasign --_ dt "-- _ (--_a sin _t) sign (--va sin _t) dt --. 4a,

o o

$b, _z

d_ ap
-_ sign _ dt _--- _ vb cos _t sign (_b cos _t) dt -- 4b,

o •

"{- "V

_ i_¢¢dt--! ,a/C--_b (sin,tcos,--cos,tsin,)X

X (--_a sinvt)dt -- _elt (_ -- _tiC)

(694)
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.Integrating (693) and subsituting (694) gives the following expression for

the variation of the kinetic energy &T during one nutation period:

AT =--4aM,,--4bM_-J #(a2-i-_su) (695)

Inserting (670) and (6'71)into (695)yields

• ,oo ,
The value of &T is always negative, and the gyroscopic frame is therefore

always stable, if

_--2_- <0,

which is identical with the stability condition (585) obtained in Chapter IV,

S 5 for the case Ms=Mr---_O. If condition (585) is not satisfied, then, by

analogy with the abowL frame oscillations with small amplitudes will be

damped, and those with large amplitudes will increase.

It follows from (696) and (685) that the natural oscillations of the gyro

housings will be damped, according to the law

! db 2 I,. + )-

24 (a" -t- v'L')

Numerical example. Assume, in accordance with the data for the

example given in Chapter IV, §5 (p. 275): l=5kgmsec2; B=O.O5kgmsec2;

H=10kgmsec; ]=100; C=0.50vsec;R=lOQ; L=0.1h; I,---10v. Assume

the following values for the moments due to Coulomb friction: Ms= 0.5kgm,

Mw= 0.001 kgm.

When friction and motor torque are neglected, the frequency of nutations

of the system is by (670)

v= B--_/=20sec-1.

It follows from (697) that

I db O.03_A __ 2.2t.
b dt_- b

For b_0.0146 (50'), the counteremf of the motor plays the main role

in the damping; for b<_0.0146, on the contrary, Coulomb friction is de-
cisive.

From (696) and (685) the influence of the parameters B, L, andRon

frame stability can also be determined when Ms---_Me_O. This problem

remained unsolved in Chapter IV, § 5, since these parameters did not ap-
pear in the stability condition (585). In this case

whence, by (670):

"b-d--[_ 24 (R'q-_L') ---- " (699)

The frame oscillations are damped more rapidly the larger the right-
hand side of (699)
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When the stability conditions (585) are satisfied, the parameters B, L, "

and R enter into the expression for the damping decrement of the natural

oscillations of the gyroscopic frame.

According to the first of equations (569) (Chapter IV, § 5):

l = l _ -]- 21,e -_- 2 A -.[- l'_O ,

where 0 is the moment of inertia of the stabilization-motor rotor with

respect to its axis of rotation; I_-_-2I,,-}-2Ais the moment of inertia of

the frame together with the gyros with respect to the stabilization axis.

The right-hand side of (699) is thus a fairly complex function of the

transmission ratio i. The selection of the most advantageous transmis-

sion ratio according to (587) has therefore to be reconsidered. If, for

instance, CI-7_-5_I, I--_2.t0 s 0, then the strongest damping will occur

at a transmission ratio 2.4 times larger than that given by (587).

The right-hand side of (699) contains the factor

B (700)

RI _t_ _/_ ,

which enables us to study the influence of the resistance B of the electric-

motor armature circuit, the self-inductance L of this circuit, and the

moment of inertia B of the gyro housings, none of which appears in stability

condition (585), on the damping rate of the frame oscillations.

An increase of the self-inductance L reduces the factor (700) and thus

also the damping. For L = const, damping is improved when R increases

from zero to

R* ---_ vL, (701)

becoming worse with any further increase of R.

The total moment of inertia of the gyro housings B appears in (700) in

terms of the frequency v of nutational gyroscopic-frame oscillations, given

by (670) S

An increase of B can improve the damping slightly, since L is usually

small, the inductive reactance _L of the armature circuit being less than

the ohmic resistance R.

An increase of B is undesirable from another point of view. It follows

from the first of equations (680) that when a moment M is suddenly applied

to the gyroscopic frame, the amplitude b of the frame's angular oscillations

about the stabilization axis is proportional to the moment of inertia B. It

iS important to note that the amplitude of the forced oscillations of the frame

about the stabilization axis, caused, for instance, by the ship's rolling, al-

so increases with the moment of inertia B, as will be shown in § 3 of this

chapter. An excessive transmission ratio j is undesirable for the same

reasons.

Lastly, we shall analyze the influence of the time constant in the circuit

of the amplifier which supplies to the stabilizer motor a voltage depending

on the angle of deviation from the mean position of the gyro housings. When

the influence of this factor is taken into account, the third of equations (688)

df . de
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"has to be replaced by (578):

dt RI . d.
L -_- -]- -_-iC _r[ --_-v; (702)

d_ p
_-_ = --I*_. (703)

Here c is the time constant of the amplifier, usually comparatively small,

and u is the voltage at the amplifier output.

Ignoring the processes encountered in a system with high frequencies,
(703) can be approximated to

v=--_--_-=--F[_--_-_], (704)

since for low frequencies p___--_.

The third of equations (688) can therefore be written:

d_ ' "C da ,
L_-6-1-I _* Ri=--F(_--_ _'_). (705)

When (689) is inserted into (705), a differential equation is obtained

whose integration yields an analytic expression for the current i. Inserting

this expression into the energy equation (693), the stability condition AT<_0

becomes for Ms_My-._-O

-_ -_/) _>0. (706)

This result can also be obtained from the Routh-Hurwitz criterion if

the time constant is assumed to be small; Reutenberg derived it in this

way.

The fact that loss of stability in gyroscopic and other mechanical systems

is accompanied by the appearance of steady increasing oscillations, similar

to harmonic oscillations, makes it possible in many cases to give a simple

approximate solution of comparatively difficult problems in the theory of

stability. This is done principally by establishing a correspondence between

the given mechanical system, which is at the stability threshold, and an-

other system, having one degree of freedom, described by a linear differential

equation of the second order with constant coefficients,

A _TC__ Ba'.. --_ncCz-----O" (707)

The coefficients A, B, and C are selected so as to render the correspond-

ing motion as similar as possible to the motion of the mechanical system

considered. The stab£lity depends on the sign of B.

Consider the problem of the stability of a mechanical system described

by a third-order differential equation with positive constant coefficients:

d_ d2z __ dz __ ,,,
a0 _-_- -{- a, d--/i--t-at _- -t-"3z=U. (708)

Assume that near the stability threshold the motion can for a short time

(one or two periods) be approximated by the harmonic law

Z = a COS (.__- 8), (709)

so that

d3x dz
dt"-__----'_ "_'" (710)
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For stability investigations (708) can then be replaced by the following

second-order equation:

_tlz _ _ dz
a_-g/_--/- (a, -- ,, a,; _-/+ _ = 0. (71l)

The condition of asymptotic stability of the motion described by (711) is,

al-- m2ae> 0. (712)

At the stability threshold the coefficient of the first derivative in (711)

is small, and therefore hardly influences the oscillation frequency w; thus

_.__ a3. (713)
a|

Inserting (713) into (712) yields the well-known stability condition

ala_ _> ala _ . (714)

Similarly, when the stability of a mechanical system described by a

fourth-order differential equation

d4z dsz __ tits __ dz_
aoa-B"+a, -_- taz -_/i--t- a3_--t- a_ = 0, (715)

is being investigated, it may be assumed that

d4z 2 d_z i d2z (718)

so that the problem is reduced to that of the stability of a mechanical system

described by the differential equation

dsz / 2 1 \ dlz dz (717)
al .-_ -t- _a_-- w o_-- -_ a,) .._ -t- a, _/-= 0.

In this case the stability condition is

as-- -'ao--_ a4> 0. (718)

As in (713), the frequency can be represented by the formula

w2=_ .
al

Inserting this value into (718) yields the stability condition for a fourth-

order linear differential equation:

a,a,as > aodt_"1- a_la,. (719)

[This is the Routh-Hurwitz criterion.]

Consider now the problem of stability in the Mathieu equation

_z
dr, _ (p_- vcos 2,.t)z-_--O. (720)

Changing the time origin, this equation can be written

d,z (2w$-{-e)x. (721 ),It--/"4- _z = --_ cos

Assume as above that the law of variation of x at the stability threshold

is approximately

x _.--_a sin..t. (722)
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• Inserting(722)into theright-handsideof (721)gives

a,=_,,i__ = _ _ ,i.(_t+ .)+ _ ,i.(.t+ .). (723)

According to (722) the following relationship is valid:

a sin (wt -}" ") == a sim wt _ = Dc " ¢os wt s|" " -- z ¢_ "3C -'_ _ |_ =. (724)

Using this relationship, equation (723) can be reduced to the form

dtz _ dz . v
,,, _,,..+(_-_-_,.)== -_.=(_.,+.) (72s)

The solution of (725) is unstable if

8ins>O. (726)

On the other hand, it must be assumed in accordance with (725) and (722)
that [near the stability threshold]

--_- ¢o$ =_. (727)

Equation (727) has a root 0_$_, and therefore inequality (726) is
possible if

ws-- _- < _ <.'--}- _-. (728)

In accordance with (728) the instability region in the I=v plane (Figure 168).
is the area between the straight lines

± _- _--__. (729)

These lines are tangential to the precise boundaries of the instability region,

which were established by Ince*.

In accordance with the general theory of Mathieu equations, for _>0,

stability (or the so-called phenomenon of parametric resonance) obtains

inside a continuous range of frequencies u, bounded by the inequalities

®,< .,< .._. (73o)
where

"I-_+_- (731)

If a term corresponding to linear damping in a mechanical system is added

to the Mathieu equation, we obtain

dsz _ g dzdis _ -}- (I*-}" v c°s 2"t) z-'O" (732)

The following equation then takes the place of (725):

4.z . , ,, . , dz ( , )=t---i'-l-(=--_s]n=)_--F _--ycos, z---

----_-- -_- sin (3=t -_- =). (733)

The boundary of the instability region in the _v plane (Figure 167) is in this

* McLachlan, N.W. Theor} and Applications of Mathieu Functiom.-- Clarendon Press, Oxford. 1947.

[Translated into Russian. [953.]
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case a hyperbola whose equation is obtained by eliminating the angle of

phase shift s between the relationships

- ---_ sin s--O,
(734)

_--Tc_ss=u.

In this case the instability region is narrower than for ct----_0,and disap-

pears altogether when v is small (Figure 167).

The above examples corresponded to linear differential equations of

motion for the mechanical systems. The same method can, however, al-

so be applied to nonlinear systems.

i !

FIGURE 166

/*

FIGURE 167

It

Consider, for instance, the Duffin-Bulgakov* equation

d2z
_t---[+/(=)= P sin wt, l(+z)=--I (--z). (735)

Inserting into this equation

z_asium_, (736)

we obtain the approximation

d$Zdt__[_- A: {.)--P• z=R(t), (737)

where Al(a ) is the coefficient ofsintot when the function ](asi. tot) is expanded

in a trigonometric series; R(t) is the remainder of the series [after the first

term]. Formula (736) is a solution of the differential equation

d'* 4- to'Z---0. (738)
dtl

The following equation is obtained by comparing (737) and (738):

A,(a) --P = am'. (739)

The possible amplitudes of the steady oscillations defined by (735) can be

approximately determined from this equation.

* Bulgakov, B. V, K zadache o vynuzhdennykh kolebaniyakh psevdolineinykh sistem (The Problem of

Forced Oscillations of Pseudolinear Systems). -- PMM, No. 1. 1943.
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The following equation for determining the amplitude a is obtained_

from (739) by substituting for Al(a) its expression as a function of/(asino)t):

4-,

v+"=-'. Il(.si.,).io,a,. (740)

Equations of the type
_2X,,. +.,C=, _t x _=0, (741)

in which • is so small ("small parameter") that the solution differs only

littlefrom the harmonic motion, can be similarly investigated.

From the mathematical point of view the above method is one of non-

linear mechanics. The strict theory of such approximate methods has been

given by Krylov and Bogolyubov.

In some cases the differential equations describing the behavior of a

complex mechanical or electromechanical system must be simplified, i.e.,
their order must be reduced.

In many cases the higher-order derivatives correspond to rapidly de-

caying transient processes of no great importance. In gyroscopic systems

of the indicator type these are the so-called inertial terms, which, because

of the unavoidable friction, cause rapidly damped nutations. When the order

of a system of differential equations is increased by allowing for secondary

phenomena, the accuracy of the result is not always improved. In fact, the

differential equations describing the system contain inaccuracies both in the

description of the functional behavior of the system's elements and in the

values of the various parameters. These inaccuracies increase with the

order of the system, and can cause excessive errors in solving the equations.

Experience shows that in many cases equations of the fifth or sixth order

describe in the best way possible the behavior of the mechanical system, and

any further increase of the order of the equations is undesirable.

Experiments and observations usually show which terms of the equations

determine the fundamental oscillation frequency of the system. By using

relationships of the type of (710) and (716), the study of the stability of such

a system can be reduced to that of a differential equation of the second
order.

§ 3. Forced oscillations of a gyroscopic frame

(monoaxial stabilizer)

By considering the forced oscillations of gyroscopic systems we can de-

termine the part played by parameters which are of secondary importance

from the point of view of stability, and to select values for these para-

meters which will not cause excessive forced oscillations of the gyros.

Consider first the motion of a gyroscopic frame when the base on which

it is mounted oscillates according to the law

0-_ OoCOS(pt-J- 3) (742)

* [Cf. footnote on preceding page.]
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about an axis parallel to the frame-stabilization axis }. We use equations .

(571) describing the motion of the gyroscopic frame

1-_-_÷H_=d4 dP M_+](i+1)e _

which were obtained in Chapter IV, § 5. The projection _ of the angular

velocity of the base on the frame axis is in this case

_e __-__p0o sin (pt-]-_). (743 )
_=-/7

The projection _ of the angular velocity of the gyroscopic frame on the

}-axis can be written
, de , d, d_ (744)

where, as in Chapter IV, § 5, a is the tilting angle of the gyroscopic frame

relative to its base and _ is the tilting angle of the frame relative to the

Earth. The angular velocity of the latter will be neglected.

If, in addition, the Coulomb friction in the bearings of the frame suspen-

sion and the torque developed by the stabilization motor are taken into ac-

count, (571) must be written in the form

dp dl __I -_- H -_: --M. sign _ nt- i --

-- ] (J -_- t ) OP'_o c°s (pt -t- _)' (745)

B -j-_--a'PH d#__7=_M, sign _"

Here, in contrast to Chapter IV, § 5, the frame-stabilization axis is de-

noted again by x and the axis of one of the gyro housings by y; M,, M_ are
the sums of moments due to Coulomb friction in the bearings of the stabiliza-

tion axis and the axes of the gyro housings respectively.

4#
The angular velocity -_- of the frame is small compared with the angular

de
velocity _ at which the base rolls. Therefore, (744) leads to

sign _ _--
de

--sign _-_. (746)

To system (745) we add the equation of the motor-armature electric
circuit, which has the form of the third of equations (580) (Chapter IV, §5):

L --_ -Jr-lC -_-_= ---_. (747)

da
Inserting the value of -_- from (744) gives

d_ . a_, ao

Substituting 0 from (742) into (748) and inserting (746) into the first of

equations (745), the following system of equations defining the motion of

the gyroscopic frame is obtained:

,_ ,_p _o ic i-
I -'JTf nt-H -gi-=M, sign-ji" -t-

-- j (i -l- t ) Op_Oo cos (pt -J- Z), (749)
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B _2_ _ H a_ J_

(749)
Jt . . _÷

L-_- -_-R, -_-IC _-{= --@ --/CpOo sin (pt -t- t).

In order to assess the influence of the Coulomb friction on the amplitude

of the forced oscillations of the gyroscopic frame, we assume first that

Ms_M_=O. The corresponding equations are then

I _a_ a-R _--ictd. ---- dt -- t -- i (] + i) 09% ¢_.O,t+z),

d'O a+
B -dyf -- H -g_ --" O

al . a_
L _ nu Bl -_- 1C -_ -_ --I*_ -- ]CpOo sin (pt -}- _).

(750)

Since these equations are linear, the forced oscillations of the frame are

harmonic, having a frequency p The constant _ in (750) can therefore be

chosen so that the following conditions are satisfied:

_=%cos pt, _,>0, (751)

where _o, which has to be determined, is the amplitude of the forced oscil-
lations of the gyroscopic frame about the stabilization axis.

It follows from the second of equations (750) that

_ _-I_ sin pg, (752)

where

Po---- p-_ #0" (753 )

Furthermore, by the first of equations (750), using (751)--(753):

Using (751)--(754), the third of equations (750) can be written in the form:

|asin(pt-_-_)-_-bcos(ptnU_)]%----(csinptnUdcospt)_/o, (755)

where

a _- pjC (i + t) poe[.
C

b--_-- (i+ 1) pzOea
C

pa ' (756)

d =-- 7r k-_---,, -2.

The following two equations are necessary in order that (755) be satisfied:

(a cos _--b sin _)00= c #0,
(757)

(a sin _-Jcb cos _) 0o--" d#o.

From these equations we obtain

(a' -_- b') 0o cos _ = (ac + bd) 4/o" (758 )

(a z -_- b') 0o sin _ --_ (ad -- bc) #/0
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sothat

or

,2+_, 0., (759)
% = ¢(ae + bd), + (._ -- tel,

1/'-_-+ b' 00. (760)*0= y

This result can also be obtained directly from (755).

The angle of phase shift _ is found from (758).
It follows from (760) that the amplitude of the forced oscillations _0 in-

creases inversely to c and d.

In accordance with (670),

_ --_ _I, (761)

and since usually_>p, it follows that

t!2 p'l > O. (762)
B

It follows from the fourth of formulas (756) that d decreases in magnitude

inversely to the moment of inertia B.
The same is true for c, since the last term in the third of equations

(756), ___H

pB '

is much larger than the sum of the remaining terms.

It was shown in the last section that the damping of the natural oscillations

of the gyroscopic frame can be improved by increasing the moment of inertia

Bof the gyro housings; this, however, causes an increase in the amplitude

of the forced oscillations of the gyroscopic frame during rolling.

If as a first approximation the frequency p of the roll of the base is neglected

in comparison with the frequency • of the natural oscillations of the frame, and if

it is assumed in addition that L-_0, then (756) becomes

a = jCp,

b _ ff + !) ptOtR
C

C=pj C pR (763)
pB '

d _ -- zRR2
ICB "

and the following approximate expression is obtained from (760) for the

amplitude 0¢0 of the forced oscillations:

-_ P'I'CZ +['(I" + I) p_OgB ] '
C (764)

q_°_O° (piC _,lt_z . {eR11, it-- pal -t- \--)-_-'_ !

This expression can be simplified still further. In fact, the product pZi"C'

is considerably larger than the term

[('+ ')cP'O'R ]z.
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• (T&is will be shown below in a numerical example.) However, the ratio

pH

is many times larger than the term pjC in the denominator. Expression
(764) can therefore be replaced in a first approximation by

to -- P'I'C_B (765)a ¢(_,i¢)2+ _npa), %"

This formula is suitable and convenient for preliminary calculations.

Coulomb friction in the bearings of the frame suspension and the gyro

housings will now be taken into account. It can be assumed with sufficient

accuracy that if Coulomb friction is not excessive the forced oscillations
of the frame will remain almost harmonic if the ship's roll obeys (742}•

Consider, for instance, the moment about the axes of the gyro housings due

to friction:

_-t" (766)

We assume that the following expression can be written for _:

p=psin (pt+ _),_ = pipcos(pt-I-_), P*> O. (767)

Since the function

.tg. _- ---_sign [P_ cos (pt -I- _)] -----siS'- [cos (pt -]- _)] (768)

is periodic, it can be represented as a trigonometric series

,_[_os (pt+,)l =_ [_,(p,+_)- =, c_+,}3.... ] . (769)

The following approximation is obtained from (767) and (769) by retaining

only the first term of the series:

__Mv#iEn_=-'_- 4My d_ (770)--_--_-•

The Coulomb friction in the bearings of the gyro housings can therefore

be approximated by an equivalent viscous friction, the viscosity depending

on the frequency and amplitude of the forced oscillations.
The case of the moment due to friction in the bearings of the frame it-

self (the stabilization axis) is different since the angular velocity of the

journal relative to the bearing is mainly determined by the tilting of the
frame base about the stabilization axis. The motion of the frame relative

to the Earth, which is of the order of several minutes of arc per minute of

time, can be neglected. For this reason the friction in the stabilization-
d0 h

axis bearings is given in (749) by the term M,#|fn -_-,and not --Msslfn--_

as would follow fron_ the more accurate equations (745).

The following approximation is obtained by calculations similar to the

above, assuming harmonic rolling of the frame base according to (742):

dO N 4M, 8"0 4M 8 •
M.,tg, _ = _ _-- ---i-- sln (pt+ _). (77 I)

It follows from (770) and (771)that equations (749) can be replaced by
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the following equations:

I _'_ dp ic _=-- 4M. sin (pt + _) --
i-+ ll"t t "_

--i(/+ t) 0f0,cos(pt+ t);

B ._V __ H _._i-_ _--_.-_ _._ ; (772)

dt
L-_ + Ri + ]C _ + t_p = --p]CO, sin (pt + t).

These equations can be solved as follows. First, Ms and M Ware assumed

to be zero, the amplitudes )t and P0 are determined by the method given by

(760) and (753), and the phase-shift angle _ from (758). The value obtained

for _o is then substituted in the right-hand side of the second of equations
(772), and the problem of forced oscillations in the presence of a moment

(770) due to friction and an additional perturbation moment (771) is solved.

If the values 9t and _, obtained for the amplitudes differ considerably from

), and _o, the calculation is repeated.

The numerical solution of system (772) is most simple when complex

numbers are used. We transfer the time origin so that _--_0, and replace

cos pt and sin pt by the exponential functions e _# and -- ie _ whose real parts

they represent. Lastly we replace the variables in (772) by the complex
variables

"-_ Ye_; (773)

the complex numbers X, Y, Z being the new unknowns. Here tdenotes the

current intensity in the armature circuit, previously denoted by I.

Inserting (773) into (772), the following three algebraic equations in the
three unknowns X, Y, g are obtained when the common factor e_i'tis omitted:

+ ipHY -- _ Z = --I 4N_____,t--i (] + t) Optl,,_p_IX

--ipHX nt- ( _p'B
4UwX

+ l -q_-jY =o, (774)

ipiCX+ v'Y+ (B+ IpL)Z --_Ip]¢_.

Since some of the coefficients in (774) are complex numbers, it is simplest

to solve by means of determinants:

!

4M- i¢_.
g

4M,
o -_,a + __ o

ip/C_ _, R + tpL.

(775)

!
-p,z _ 4m, -i0"+ t)o_ _ ic_.£_

z t

--_pH 0 0

_piC tpict_ n + _pr.

(776)
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where

A_

4M# .

--pu tps _ --6- -l {i + i)o_

4M w

-.tpu -p,a + __ o
tpic _ _pic_

-p,z _rn - i-!-c
g

4M_,

--_pa --p'B + t _ 0

IpiC _, a + tpx.

(777)

(778)

Let X,, Y,, Z, be the real parts and Xz, Yz, ZI the imaginary parts of the

complex magnitudes X, Y, and Z. It can be shown that the solution of (772)

is then, _ _ X z _ pt -- X s Sin pt,

p=_', _, p:--_',sm p:,
(779)

--- Z z cos pt -- 7,2 sin pt.

The amplitude and phase of the variables _. @, and l can now be found.

Assume, for instance, that

It then follows that

p=h _o, (vt+,). (v8o)

Y* sin s = Yz (78 i)

Similar formulas can be obtained also for # and i.

If the value of @l differs considerably from @0 obtained from (753) and

(760), _I is substituted for P0 in the second of equations (772) and the calcu-

lation repeated.

The terms containing L, Mj,, I, and 0 in the determinants (775)--(778)

and the term containing B in the determinant (778). can be neglected with-

out greatly reducing the accuracy of the calculations, as will be shown in

an example. The following approximate formulas for #z and Pz are then

obtained:
I @aN.

IPB [I _Cl-
---;&_-1%; (782)

#' = a ¢(_i¢)'-- + (ints),

H

_-----p'_- _1" (783)

For M.--_0, (782) becomes (765), while (783) is similar to (753).

Numerical example. Let

l=:l_,--}-21_.,Jc2AnuJ2O--_Skgm sec2; j--_--i00;

B:=0.05 kgm sec2; 0 --_2.5. t0 -s kgm sec2;

H---t0 kgmsec; M.-----0.5kgm; Mw--0.00|kgm;
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C-----0.50vsec;p--_t0v; R---_t0Q; ; L---0.ih;

00----0.2 (_ i2°); g_9.8m/secZ;

p--.._0.6sec -1 (period of rolli0.47sec).

The amplitudes of the forced oscillations obtained assuming that

M,,_M_--O, i.e., by (760) and (753), are

,.=0. _,+-_+_',- 0.00.74(_3.

By (756)

_o-" _ #0 ----_0.39t (22 ° 2,53.

a--JpC t£ (/+ t) paO ---- 30.0-- 0.00t07;
C

b -- (/+ t)C°_tR ----0.t765;

o=,_ +_(_-_,)-_= _o+_ _- _;

The phase shift angle _ is found using (758):

a--229o_.

If it is assumed, in accordance with (742), that

e=eo_(pt ÷_)=0.2 co, 0_ -t- 229°_

then by (751) and (752)

$ _ So ¢_s pt-----0.00i174 _as pt,

_ _o sin pt----- 0.39t sin pt.

The approximate formulas (764) and (765) give the following values

for _O:

J,,_ +E"+'_'" ]',.=,. (,,___}.+(_f =o.oo,,0,,OF

S0= v,pcsn O°-- 0.00t i65.
s _(_,ic),+ (tRps),

To allow for Coulomb friction in the suspension we must use (775)--(778).

In a first approximation for _= 0.391, these become:

--ptl Ipfl _ _C
f

4Ms =A=--_+t_
-_ps -fB +, _ o

JpiC j, n4-_pL
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4Mr iC ]

l _ -- i (i + l) Optee tpe ----_-

4M_ =

lpjC% i_ R + tpL

-- O.l t 6 -- J0.666

4M_ ic
--ez! __ -- i if+t) 0@% -- g

--tpH 0 0

,pic t_ce, n + epL

== -- 222- i 1.32

X ------ 0.000720 + 10.00125; Y _ 0.36t -[- i 0.305.

Furthermore, by (779),

$ _ -- 0.000720 oos pt -- 0.00t25 sia pt,

_---0.36t cos pt _ 0.305 sin pt.

When Coulomb friction is allowed for in the suspension, the amplitudes

in a first approximation are:

¢1= 0.00t44, p,=0.473.

These values differ only little from _o and _0, and a second approximation
is therefore unnecessary.

The approximate formulas (782) and (783) give

_z = 0.00141, El-- 0.470.

Similar calculat!Lons for the current intensity ! in the armature circuit

of the stabilizing motor lead to the following result:

i= -- 0.357 cos pt -- 0.30t sin pt.

4. Behavior of a directional gyro on

a rolling base

Approximate solutions such as those given above, based on the assump-

tion that the motion of the gyroscopic system is harmonic, are often insuffici-

ent. In such cases it is customary to use successive approximations, based

on treating the separate terms of the differential equations describing the

given gyroscopic system as external forces. The laws of variation of these

forces with time gain in accuracy with each subsequent approximation.

From the mathematical point of view this method represents a variant of the

small-parameter method.

Since as a rule far-reaching simplifying assumptions are made when set-

ting up the differential equations of motion of the system, the question of the

convergence of the successive approximations has hardly any meaning. In

particular, there is no sense in continuing with further approximations when
the difference between successive solutions lies within the limits of the ac-

curacy with which the coefficients of the differential equations or the func-

tional expressions of physical laws (friction, virtual forces, etc) appear-

ing in these equations have been given.
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The suitability of the approximate solutions is usually determined by.

comparing them with the results of corresponding measurements on gyro-

scopic devices operating under laboratory conditions.

The method of successive approximations is used in this section to in-

vestigate the causes of azimuthal motion of a directional gyro assembled

as shown in Figure 168. This motion was so large when this

particular directional gyro was tested on a rolling base that

D it became necessary to abandon the design. It will be shown

below that a satisfactory performance can only be expected

from such a device if the axis of the gyro's outer gimbal

ring is stabilized in the vertical direction.

We set up the equations of motion of the directional gyro,

assuming that the base on which it is mounted rolls about the

horizontal axis } of the fixed coordinate system }_, and that

a corrective moment of constant magnitude is applied to the

pivot axis of the outer ring by an electric_motor D. The

sign of the moment is determined by the position of the cor-

rective pendulum Mmounted on the gyro housing (Figure 168).

The Earth's rotation will be neglected, since the apparent

motion of the directional gyro produced by the vertical com-
FIGURE 168

ponent of its angular velocity can be made to vanish by means

of a special weight secured to the gyro housing. The moment

about the gyro-housing axis due to this weight must be such as to make the

angular velocity of precession about the outer-ring pivot axis caused by the

weight equal to the vertical component of the Earth's angular velocity. The

horizontal component of this velocity can be neglected since it is small

compared with the angular velocities relative to the Earth of the base, the

outer ring, and the gyro housing. The angular velocity of the housing is

mainly determined by the torque of the stabilization motor, the inertia of

its rotor, and the friction in the bearings of the outer-ring pivots.

Fix a moving coord£nate system |'_]_' to the base of the device (Figure

169) in such a way that the }'-axis passes through the center of the gyro

gimbals and is parallel to the E-axis about which the base rolls, the _'-axis

being parallel to the outer-ring pivot axis $'. The vertical _-axis of the

fixed system }_]_and the el-axis of the auxiliary system }1_]z_llie in the

"rolling plane" _'; the },-axis of the auxiliary system is horizontal and co-

incides with the }'-axis.

Let _ denote the angle which the base plane makes with the horizontal

plane (_b is the angle formed by the _'-axis with the vertical axis C, of the

}1_]s_lcoordinate system moving translationally). Fix a coordinate system

z'_f to the outer ring of the gyro in such a way that the x'-axis is parallel

to the gyro housing axis and the z'-axis parallel to _he outer-ring pivot axis

(as already mentioned above).

Let 0 be the angle between the _- and }'-axes (Figure 169). For )---_0

the angle 0 defines the gyro position in azimuth.

The velocity of the coordinate system x'_f can be considered to consist

dO

of an angular velocity -_- relative to the }'_]'_'system and an angular velocity

_ jointly with this latter system. Since the vector of angular velocity
_7

is directed along the _'-axis (parallel to the z'°axis), and that of along the
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}"-axis (Figure 169), the projections on its axes of the total angular velocity

of the z'y_z ' system are respectively

_-_---cos 9, --_t sinO, _-. (784)

Fix now a coordinate system :r_: to the gyro housing, with y-axis parallel

to the rotor's axis of rotation and in the direction of the angular momentum

vector H, the z-axis being parallel to the _-axis (Figure 170). Let ? {Fig-

ure 170) denote the angle between the y- and _-axes, thus defining the tilt-

ing of the housing relative to the outer ring. The absolute angular velocity

"_ 9"

FIGURE 169

of the gyro housing is equal to the geometric sum of the absolute angular
d_

velocity of the coordinate system z'l_z'and the angular velocity -_- of the

housing relative to this system, whose vector is directed along the z-axis

which coincides with the z'-axis. The projections of the angular velocity

of the system _z' on the axes x, y, and z are equal to the sums of the

projections on these axes of the components directed along the axes _, y',

and _ (Figure 170). These sums are respectively

_4, d_e . ,Io
-J- -_ sin-_[_- ¢0$ O, _-_- Sin 0 ¢,OS? y,

(785)
a_ . Jo

-_ sin 0 sin 2-_--_- e,os 2.

It follows that the projections of the angular velocity of the coordinate

system zUz on its own axes are

p _--£i- cos
dO .

q_--- -- d-_ sin | ¢,os ? --_ -_-_ sm 2, (786)

a_ do
r ---_ _-sin 0 sin 9 _- _- e_s ?.

Since the angular momentum H of the gyro rotor is of constant magnitude

and its vector is directed along the y-axis, the projections of the velocity of
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its vertex on the axes z, y, and g (Figure 171) are respectively

--rH, O, pH. (787)

These projections are equal (cf. Chapter IV, § I) to the sums of the

moments about the corresponding axes due to the forces acting on the gyro

housing. The moments about the z-axis are due to friction in the bearings

of the housing spindle. This friction being very small, it can be assumed

with an accuracy sufficient for our investigations that

d# _e (788)
--rH=--(-_sia Osin ? nt---gi- cos ?) H---_O,

whence

--g/- _--- ---_- sin 0 tg ?. (789)

Let/V be the sum of the moments about the z-axis due to the forces ap-

plied to the gyro housing by the outer ring. It follows that

Let N' denote the sum of the moments about the f-axis due to all the

forces except the housing reaction acting on the outer ring. When the

z z_ z

FIGURE 170 FIGURE 171

inertia of this ring is neglected, it is found that the sum of the moments

about the z'-axis due to the forces acting on the ring (Figure 172) is zero.

JV'--N COS? _---0. (791)

The moment N' consists mainly of the moments due to inertia of the

rotating parts linked kinematically with the ring (stabilization motor rotor,

follow-up system pick-up, etc) and friction in the bearings of these parts

(referred to the outer-ring pivot axis), and also the stabilizing moment

exerted by the stabilization motor:

N, . dte _ . de .
_--l-_--i---r s_gn- _- _ K, (792)

where I is the moment of inertia of the whole system about the outer ring

axis, /7 is the moment due to friction, and K is the stabilizing moment

whose sign depends on the position of the corrective pendulum fixed to the

gyro housing.
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Assuming ? to be small, the following approximation is true:

_ _,N', (793)

so that by (790),

(-_--_tCOS0 -'1-K. (794)÷ _-} J, =--l _7_--r s,gn _i-

We introduce the notation

l ¥ K (795)
a-----_--, _"A" "----'_'"

The following two differential equations describing the motion of the direc-

tional gyro are then obtained from (789) and (794):

_- ---_ -- sin 0 tg ?,

d_ _ d,o . ,_0 (798)d--Y"_" cos 9---=--a-_i---_ szgn _i- + v.

The corrective pendulum is mounted in such a way that the moment

exerted by the stabilization motor when the base is immobile and the rotor

axis not horizontal, tends to restore the rotor axis to the horizontal posi-

tion. In particular, on a horizontal base (_0), the sign of _ in the second

of equations (796) must be opposite to the sign of _. For instance if ?_0,
the left-hand contacts of the corrective pendulum are closed (Figure 172);

II

#,

_ej, e
#

FIGURE 1'72 FIGURE 173

when the friction in the

becomes

outer-ring pivot bearings is neglected, (796)

_i'---- O,

&V (797)

During rolling, the pendulum will close its contacts alternately, de-

pending on the direction of the inertia forces due to the translational motion

of the instrument.
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It is easilyseen(Figure173)thatwhen

--; <O<_;, (798)

the inertia forces due to translational motion are directed to the left when

_>0 (Figure 173), if the gyro housing is viewed from the positive E-axis,

and if it is assumed that rolling obeys the law

_e sinpt, (799)

where _e is the amplitude of rolling, and p its frequency.

In fact, in this case the projection of the translational acceleration on

the _-axis is positive. The projection of the inertia force, on the other

hand, is negative. It follows that when _>0 and ? is small, the pendulum

will press mainly against the left contact, so that the sign of v in (796) must

be negative. When rolling takes place, the equations of motion (796) of the

directional gyro must be written in the form

de _ _-t sin 0 tg ?,

(8o0)

where _ is defined by (799) and 0 is within the limits given by (798).

It is very difficultto solve these equations accurately. Accordingly,

the influence of each of the terms on the right-hand side of the second

equation on the azimuthal motion of the gyro will be analyzed approximately

and independently of the other terms: only the influence of inertia forces

(--a_), friction or the corrective pendulum (--,sign _) will be

taken into account.

Since the angle 0 changes comparatively slowly, the functions sin 0 and

d2
cos @ in (800) can be considered as constants in the calculation of _ and d-}"

In addition, the expression

tg ? _ ?, (801)

can be inserted into these equations since ? is small, and all terms after

the first in the Fourier series for sign_ [cf. (769)],

sign4/=slgn (#esin pt)= 4 sin pt-{- 3_sin3pt nu ... (802)

can be neglected.

It follows from (800) and from the assumptions just made that the follow-

ing differential equations account for the influence of the corrective pendulum

only:
dO a+
_- _ _ _ ? sin O,

d2 + co.0=- ,inpt. (803)

The approximate integration of the second of equations (803) (assuming
0 = const) gives

2 = a nu _ cos pt -- %_cos O. (804)
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d_
As first approximation we neglect the term --a-_-i.

of equations (809) yields

Inserting this expression into the first of equations (809) leads to

do 4_
_/-_ _-J7 (5-- ? cos 0)sin0. (81 I)

d_
As second approximation the term --a_-_- is retained in the second of

equations (809). Using (811). integration yields

dm

=:--_cosO-_-a _--_t (: -- ,_ cos O) sinO. (812)

Inserting this expression into the first of equations (809) gives the second
d0

approximation for _-_:

,, ( )d---i-_--_-sinO I--_cosO-_a_-gsinO--a_ sinOcosO . (813)

Substituting the expression _0sin pt for %_, the following equation is then

Integrating the second.

(810)

FIGURE 175

obtained for the angular velocity of deviation in azimuth of the outer gimbal
ring:

40
--_ -- p,_oa sin 0 cos pt _ p_ cos 0 sin 0 cos pt sin pt --dt

--aPt_/_asinSec°sSpt-_aP'_cosZptsinp tcosOsin*O, (814)

which can be reduced to

i ,
de -- pg,, sin 0 cos pt + -_pg, cos 0 sin 0sin 2pt +

+ ¼ p'9]cos0sin'e(sinpt+ sin3pt)--

2 P_lasin'ec°s2pt--2 f_. sm'O. (815)

All terms in (815) except the last are periodic functions of time and

do not therefore influence the continuous deviation in azimuth of the gyro.
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Theintegrationconstant• is equalto themeanvalueof theanglebetween
thegyro-rotor axisandthehorizontalplane,andalso, byvirtue of (799),
to themeanvalueof %

Inserting (804) into the first of equations (803) gives

de d_b (. +-_cospt--,eo_'lsin', (805)

which by virtue of (799) is transformed into

dO -- pa_0 cos pt sin 0-JrP_ cos pt sin pt cos Osin O--

4v
-_ _e eos"pt sin e, (806)

or,

| 2 "
de -- pa_0 sin 0 cos pt -}- -_ pdl, sm 28 sin 2pt --

2v
_o sin 0 cos 2pt -- _ _o sin 0. (807 )

The first three terms on the right-hand side of (807) define a periodic
variation of 0 while the base rolls. The last term defines a continuous

azimuthal deviation of the gyro at an angular velocity

2, _0 sia 0. (808 )

If the leads of the pendulum contacts are reversed, the gyro's deviation
in azimuth must change direction. This has been confirmed experimentally.

¢,

FIGURE 174

Figure 174 shows the motion in azimuth of the gyro in different quadrants

under the influence of the stabilization motor, controlled by the corrective

pendulum. The rotor axis tends by the shortest path to attain the rolling plane

_'U perpendicular to the _-axis about which the gyro base rolls,
Consider now the influence of inertia on the azimuthal motion when the

4_ .

outer gimbal ring tilts about its axis, Replacing the term ---_-sln pt in the
dq

second of equations (803) by ---ad- _, we obtain

-_ --_ --_- ? sin 0, (809)

-_- cos O= --a_-.
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This motion is determined by the last term alone, i.e.,

--{- sin'0. (816)

The gyro's deviation in azimuth during rolling, caused by the inertia of

the outer gimbal ring_ is shown in Figure 175 (_0).

It remains to inves;tigate the influence of friction in the outer-ring pivot

bearings on the azimuthal motion of the gyro.

The relevant differential equations are

,_e ,14,
-_T_-- _-_- ? sin O,

d_ d? de (817 )

If instead of the Coulomb friction in (817) we substitute viscous friction

characterized by a suitable viscosity coefficient _l we can expect that the

results will not be altered significantly. The following equations will there-
fore be considered:

ae 4_

(818)
d_ gO-_-, cos 0nu --_--- --_-.

As a first approximation neglect the influence of friction on the gyro
motion, and assuroe, as before, that e is a slowly varying function of

time. An expression identical with (810) is then obtained:

Using it, we again obtain (811)

ae -- _-_._(=--, cos O)sin e.

Integrating this expression under the assumption O = const yields

O= -- a) sin 0 --}- --_ ,_' sin 0 cos 0 -J- _, (819)

where _ is a constant.

The following expression is obtained from (818) and (819) as a second

approximation:

? = =-- _ cos 0-- _0= =-- _ c_ 0-}-,_ sia0--

--½ _' sin 0 cos O, (820)

so that

do a_
-_7-- _- ? sin O--

Inserting (799) finally reduces this expression to the form

| i •
de -- p,o = sin 0 cos pt --J-i P*o (sin Ocos O-- _ sin' O)sin 2pt +d---f ._

-[- _-- _lP_ sin" 0 cos 0 (cos pt _ cos 3pt). (8 2 2)
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All terms on the right-hand side of this expression are periodic func-"

tions of time whose mean values are zero.

It follows that friction does not cause the deviation in azimuth of the

directional gyro during rolling. The main causes of this deviation are the

influence of inertia when the outer gimbal ring is tilted relative to the

instrument body, and the moment applied to the outer ring by the stabiliza-

tion motor when the latter is controlled by the corrective pendulum.

It can be shown that although the problem is nonlinear, the total angular

velocity of deviation in azimuth of the directional gyro is approximately

dO • ",i . t^ 2_
-- "_"-- -- -'_ _s,n u ---- _,sin 0. (823)dt -- 2 _-_0 z

It follows that the angular velocity of deviation is zero when 0_---0 and

0_---_, i.e., when the angular momentum vector is perpendicular to the
axis of roll [. For other values of 0 the second term is either added to,

or subtracted from the first. It may therefore happen that the angular

velocity of gyro deviation is excessive, or that it is almost zero. This is

the main reason why this design was abandoned.

Numerical example. Assume that

H:500000gcm sec; l_._-25000gcm sec2; K_-_5000gcm;

_0____0.2 (_t2°); 5---0.05 (---3°);

0=900; p____t.0sec -1.

In this case

I K -1
a-_-_-=0.05sec; _=-f-_0.0lsec ;

p'_ sin' 0---_ 0.00005 S ec- 1__ 0-| 7°/rain;2

-_-_o sin _ sec _ 4.33°/rain.O 0.001275

The calculated values of the deviations of the directional gyros are near

to the experimental results.

It follows that the directional gyro must either be mounted on a stabilized

base, or the parameter a (which characterizes the moment of inertia of the

outer gimbal ring and the parts linked kinematically to it) and the corrective

coefficient _ considerably reduced.

Designs of directional gyros exist in which the stabilization motor is

controlled by a special contact device connected with the housing spindle

(Figure 191). In this case the motor develops a torque moment of such a

sign that the gyro precession caused by it tends to move the axis of the gyro

rotor into a position perpendicular to the plane of the outer gimbal ring. It

can be shown that in this case the behavior of the directional gyro is similar

to that of a double-gyro frame used as gyro azimuth. The need to stabilize

the vertical axis of the frame suspension in order to avoid large deviations

in azimuth due to lhe so-called additional solid angle was indicated in

Chapter II, § 4. The same will obviously be true for a similar monogyro

gyroazimuth design.
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i.e._

and

Introduce the notation

It is easily seen that when rolling is not excessive

T_ m--z, (825)
g

where w is the horizontal component of the acceleration of the point at

which the instrument is located (caused by the shiproll), and $, the gravita-

tional acceleration*. Assume that

-- = = sin (pt + 8) -_- _ sin (qt -_- =). (826 )
g

This is the case of complex rolling, in which the motion of the dynamic

vertical represents the superposition of two periodic oscillations of dif-

ferent frequencies p and q, usually with different amplitudes a and _ and

phase angles _ and $.

For most instruments the functional relationship K(T ) has the form shown

in Figure 176.

The region of linearity, mTl<T_Tl, in which the corrective momentK

is proportional to T, is usually small, vanishing in certain instruments.

We shall therefore assume that the corrective moment is under a so-called

contact control, defined by

K (T) _-_ KxsignT, (827)

K--_--KI, for T<O
(828)

K=-Jr-Kp for T>O-

Ucos ? --- p, (829)

(830)

(831)} ._..._w.
I

Using also (825) and (827), equation (824) can be written in the following

form :

4z -_-valgn(_--x). (832)

An elementary analysis of (832) was given by Zaitsev for simple rolling,

defined by
}==sin pt. (833)

The large errors predicted by the theory were confirmed by experiments

made by Zaitsev under laboratory conditions.

Great difficulties arise when applying Zaitsev's method to the solution of

equation (832) in the case of complex rolling. The problem is therefore

approached in this section in a quite different way, applying probability

considerations. A remarkable result of the theory confirmed by tests of

a gyrohorizon under operating conditions, is that the errors during complex

rolling are much smaller than the errors during simple rolling of the same

amplitude.

Consider first the elementary solution of (832) [by Zaitsev's method].

Plot a curve corresponding to equation (833) (Figure 177). Let the value

* More exactly, "f == arctg _ _ ¢, where w' is the vertical component of this acceleration.
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ChapterVI

VARIOUSPROBLEMSINGYRO-SYSTEMMECHANICS

§I. Applicationof probabilitymethodsto determiningthe
errors of a gyrohorizonwithcontactcorrection

duringrolling

Theorientationin spaceof gyroaxesmaychangedueto variousfactors,
e.g., friction in thesuspension,inertia, theEarth'srotation, imbalance,
etc (seeChapterIV). Whengyrosareusedto stabilizea horizontalplane
ona rolling ship (oranyothermovingobject),it becomesnecessaryto apply
suitablecorrectivemomentsinorder to return themto their initial position.
Thesecorrectivemomentsarecreatedbydevicesreactingto changesin
thedirectionof thedynamicvertical to theship'sdeck%

Therolling andpitchingof theshipcauseacontinuouschangein the
directionof thedynamicvertical, and therefore a continuous variation of

the gyros' orientation through the action of the corrective moments. This

leads to errors in the determination of the horizontal plane.

In order not to complicate the analysis, we assume that only rolling oc-

curs with zero yaw and pitch, and that she ship does not turn. The apparent

motion of the gyros will then be due to the angular velocity of the Earth and

to the action of the corrective moments. The influence of the angular veloc-

ity of the ship due to its motion along the curved surface of Earth can usually

be ignored.

Let the gyrohorizon consist of only one gyro with a vertically oriented

vector of angular momentum**, and let the axes of its gimbals be respec-

tively parallel to the longitudinal and transversal axes of the ship. Denote

by • the angle of deviation of the gyro's angular r_omentum vector from the

[true] vertical to port in the transverse plane of the ship, and assume that

the ship's bow points in the north-south direction. The gyro motion will

then be described by the equation

H (--_ - U cos T)--_ K ('f). (824)

Here U is the angular velocity of Earth; T, the local latitude; K{'[), the

magnitude of the corrective moment; and T, the angle between the dynamic

vertical at the point where the instrument is located and the angular mo-

mentum vector H of the gyro rotor.

• The dynamic vertical is the direction of the geometric sum of the gravitational acceleration vector

and a vector equal and opposite in sign to the translational acceleration vector of the point at which the

instrument is located. It is the direction of a pendulum whose period of natural oscillations is small

compared with the period of the ship's roll

• * Different gymhorizon designs are analyzed in the same way.
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P ,

of_r for t_0 be _>0 (different initial conditions are treated in the same

way). In this case z will be greater than } at t--_0 and for a certain time

after this, and therefore

_--x d0. (834)

It follows then from (832) that

a. (835)

Integrating (835), we have

z=xo--(v--_)l. (836)

This equation is represented in Figure 177 by the straight line AB. It is

easily seen that a condition necessary for the proper functioning of the
instrument is

'_> p.; (837)

this means that the corrective moment K= must be sufficiently large.

0

FIGURE 1"/6 FIGURE 177

The line (836) intersects the curve (833) at point B at which the angle

"f.----I_--z (838)

becomes zero, and then changes its sign.

From that point on x will vary (as seen from (832)) according to the law.

"-_ = P' "SOv. (839)

The integral of this equation is represented in Figure 177 by the straight

line BC having a positive slope. Point t7 corresponds to the next change

in sign of the angle T; the variation of x after this point will again be given
by (835), etc.

The function x_z(t) is thus represented by the broken line ABCDE ....

whose break points lie on the sinusoid (833), and whose slope is alternately

positive and negative, depending upon whether it lies below or above the

sinusoid. If point B 1Les near the maximum of stnusoid (833), it may happen
that at this point

d_ .I u._l_ v
-a-i- _. r __ • (840)

An analysis similar to that in Chapter V, § I shows that the line B17 must in

this case be replaced by part of the sinusoid, the position of point C being

determined by the equation
d}

d-T _---_F _ v. (841)
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Thefunctionx_-z(t) beyondthis pointis asgivenabove. This plotting .
methodcanobviouslybeusedfor anyshapeof thecurve_-_(t), including
thecaseof complexrolling accordingto (826);in the latter case,however,
it is difficult to drawconclusionsonthepositionof thebrokenline parts.

For a sinusoidthesolutionof theproblemis simple, sinceit is obvious
thatthebrokenline rapidlybecomesa periodicfunctionwhoseperiodequals
thatof thesinusoid(833).

Considerthreeconsecutivebreakpointsof the line (Figure178). Let
tl, t2, ts be the abscissae and zI,xs, xs the ordinates of these points. It
follows from (839) and (835) that

Z 2 _ 'e l

tz--tl --l*-l-v, (842)

zs-- _ (843)
t$_tt _F t-v"

Because of the periodicity,

z_-'- z,, (844)

2z
t3--tl-- _. (845)

P

Lastly, since the break points lie on the sinusoid (833):

x s _ a sin pit, (846)

_a sin pt r (847)

FIGURE 178

Relationships (842)--(847) form a system of six equations with six un-

knowns, these being the coordinates of the three break points. Equation
(842) can be written

(zs-- xl)= (_+ v)(is-- t,). (848)

Eliminating xt and ts from (843) by means of (844) and (845) yields:

2x

<.T,-x,)=(,-.)(v+t,-t,)
It follows from (848) and (849) that

p(t,- t,)=
and therefore

.vt -- ttz
.Tit -- X 1 _--- _ 11:.

On the other hand, by (846), (847), and (850),

(849)

(850)

(851)

(852)
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Thus,by (851) and (852):

"- _. =2.0os(:_-_.+ ,,,),,.--_-.._ (853)
from which t I can be determined.

Of particular interest is the mean deviation of the gyro axis from the

[true] vertical :

Zav"--_ -_" (854)

It follows from (846) and (847) that

•av= =si. p _ _o_p -_-_-. (855)

Inserting (850) this expression becomes

•,,_=•_,.(-_-_.+_,,)_o._-_ .. (856)
It follows from (853) that

,, '"-"-]'.2_a s/n.__.._ z (857)

so that (856) becomes

sin__p (858 )

Iflxm_0, i.e., if the influence of the Earth's rotation on the instrument

is eliminated in some way (for instance, by a compensating moment), (858)

shows, as was to be expected, that

_av'_O. (859)

AS is easily seen from(830), _ represents the angular velocity of the

correction; it is usually considerably larger than the horizontal component

I• of the Earth's angular velocity. The following approximations can there-

fore be employed:

oo_-_-.=_i. _ = _, (860)

Inserting (860) and (861) into (858) and neglecting l_i, small compared with

vi, yields :

xav--'_'-_'-Vl --(_-_ ") • (862)

The product p_ represents the angular velocity with which the dynamic

vertical deviates from the true vertical. This velocity is much larger than

the angular velocity _ of the correction. The radical in (862) can therefore

be replaced by unity. This leads to the following approximate formula first

derived by Zaitsev:
Iral• z

Xav_-_ "%-•_-. (863)
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The following numerical example will show how large the mean deviation

of the angular momentum vector from the vertical can become during

rolling. Assume that

w____zsinpt, a-_0.t, p._i.0sec -1,
g

_:I0 '/min, v:lO0 '/min.

It follows then from (863) that

=av=  -=0.0,57 (54 ,

which represents a considerable error in the instrument indication. The

exact formula (858) gives

=a v= 0.0i 564.

The second method of investigation is based on the assumption that the

range of variation of z is small compared with the corresponding range of

variation of }. In other words, it is assumed that during simple or complex

rolling the deviation from the vertical of the angular momentum vector varies

negligibly compared with the range deviation of the dynamic vertical. This

is true for time intervals of the order of the roll period.

Integrating the equation (832), i.e.,

z),

from t=0 to t_--_T yields

f

= (7) -- = (0)
T : }-I--t- _ s/gn (}- z) dr" (864)

0

The left-hand side of (864) can be neglected for sufficiently large values

of T. For a steady periodic motion of the gyroscopic instrument during

simple rolling of the ship, the left-hand side of (864) vanishes if/' is the

period of roll. Thus

+ rf "gn --=)dt=0. (865)

0

The magnitude z in the integrand of (865) can be considered as constant

in accordance with the above assumption so that

i'

_ $ign(_ --z)dt: T,-- Tx, (866)
0

where T l is the sum of the time intervals during which the curve _E(t) lies

below the line _=z--_-const, and T I is the sum of the time intervals during

which the reverse is true.

For complex rolling characterized by an equation of the type of (826),

it can be expected that

lira Tz--_L-_Ttz =](z ), (8671

where /(=) is a function depending on the specific form of (831) for the

function } = } (t).
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In order to solve this problem under the above assumptions, it is sufficient

to find the limit of I' s:T whenT--* co, T 2 being as above, the sum of the time •

intervals during which }(t)>z (see p. 226).

If p and q are incommensurable, }(t) can be considered as the sum of two

random independent variables*:

(t) = _,sin (pt --I- _) and _ (t)---- _ sin (qt n t- s). (877)

The probability that _lwill lie in the interval (_],l}--_d_])is

! d_ (878)
a2¢_-_---_s "

In fact, (878) represents the fraction of the period during which a point

whose motion is given by

1]_ a sin (pt -}- _), (8 7 9)

is situated in the interval (_, "q-}-d_]),since differentiating (879) yields:

d_l = p" cos (pt nt- _) dt = _ ,f pdt, (88 O)

or

dt --- dr (881 )

where dt is the time taken by the point to pass through the interval d,i.

During one period the point passes twice through this interval. The fraction

of the period during which it is within the interval d_l is therefore

2tit d,j (882 )

p

Similarly, for the random magnitude _(t)the probability is

. _ . (883)

The probability that _] and _ will simultaneously lie within the specified

intervals (_], ,]nt-d,l), (_, _nt-d_)is

t d_d_ (884 )
*' ¢ia'--,f) (_'--r,,)

To find for what [}artof a sufficiently long time interval T, 7] and _ re-

main within a given region S (Figure 180), this expression must be inte-

grated over the region S:

m ¢(,,s_ _2)(p,-- _,)

In our case the region of compatible values of _] and _ in the _l_plane is

a rectangle with vertexes (:J:_,:J:_). It is easily seen that

i
d,_ --t; (886)

-, ,,'(a, -- _) 11_-- t.,}

this was to be expected. Compatible values of _] and _ are impossible out-
side this region. The condition

_z (887)

* Gnedenko, B.V. Kurs teorii veroyamostei(A Course in the Theory of Probability).-- Fizmatgiz. 1961.
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"It follows from (865)--(867) that

/(=1=÷. (8681

The roots of this equation have to be found in order to solve the problem.

In the case of simple rolling according to (833),

= ¢ sin pt,

it can be assumed, as already mentioned, thatTis equal to the roll period:

T _ 2--_z• (869)
P

On the diagram of the sinusoid (833) draw a straight line parallel to the

abscissa and at a distance z 0 above it (Figure 179). It is immediately seen

that

so that

F
/',= T+2t,,

T1-- Ts -- 4tl __2ptl
-f -- T ----4"

(87O)

(871)

z0

FIGURE 179

Here ta is the least root of the equation

sin pt --x 0. (872)

Whenz 0is small compared with _t, (872) can be replaced by the approximation

_--_ sin pt, _ pt a (8 7 3 )

whence

T, -- Tt 2.,
_--- (874)l e z_

The following relationship is obtained from (865), (866), and (874):

2, =0. (875)

This again leads to (863).

Consider now the case of complex rolling, for which the deviation of

the dynamic vertical from the true vertical is given by (826):

-- = a sin (pt -}- _) Jc _ sin (qt Jc ")" (876)
g
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correspondsto thatpartof therectangle(Figure181)to theright and
abovethestraight line

_4-¢=z. (888)

The ratio T2: T which we shall denote by ]z(z), thus represents a double

integral over this region.

For x_ 0 the region }_>z may be either triangular or trapezoidal, de-

pending upon whether ,,--_ is larger or smaller than z. For _ the

region can only be triangular. Usually the region is trapezoidal; only this

-$

FIGURE 18C FIGURE 181

case will therefore be. discussed. Let us assume that _. In this case

has to be integrated from--_ to _, and _ from zm_ to ,,. Therefore

= I, = I (889)

The value of the indefinite inner integral is arcsin -_ . Therefore

+_

, ,- -- arcsm --;--) _p_ =1'

+p

l t ; z--l: d_ (890)
= _--- _- arcsin a V_ -- r.l'"

Since

ir a= T m T 2, (891 )

it follows that

lira r,--_', =lira (,_2____)=__s_' tG_,in._. , a,
_.,_ 7' T-,_ --_ _Cl" • (892)

Inserting (892) and (868) into (867) gives

-HI

__2 f ar©sin ,--, d, =+,
-_ , _ (893)
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which by the substitution

is reduced to the form

Therefore

+÷
J arcsin =- psinO d6_ _= I*a 2

I

(894 )

(895)

-_----? (--_-o-_--) o (896)

where ?, being a function of two variables, can be plotted with the aid of

numerical calculations.

An approximate solution of (895) is easily obtained by assuming that

z,_. The integrand can then be replaced by the first two terms of a

Maclaurin expansion:

arcsin (+-- =_---sin 8) = -- arcsin (-_-_ sin 0) -_-

t

+ _ i/,_(_,,o,),+'-" ,,_,
being odd,

\= ]

+÷
I srcsin(=P--sin0)d0--0'

f

s

(898)

so that (895) can be replaced by the following approximation:

+-i"

J dO _ ,_t

V(+ )' "'_2_ I-- sinO
t

, (899)

whence

zl _ IL

x= T" K---_p) "-;-' (900)

K(_ -_ ) is a complete elliptic integral of the first kind';'. It is re-
where

markable that in the case of simple rolling (_=0) (900) becomes identical

with (863). This happens because

K (0)=-_. (9Ol)
In the general case

"(_)=÷ [' +'(D'+--.] >-;-. ,00.,
* Smirnov, V.I. Kurs vysshei matematiki(ACourseofHigherMathematics). VoL Ill. Patt2.--GITTL. 1949.
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It follows that the instrument error during complex rolling, defined by

(876), is smaller than during simple harmonic rolling which is one of the

components of complex rolling.

This is probably the reason why in the case of contact correction the

gyrohorizon error on a rolling ship is smaller than is apparent from (863).

In fact, the maximum deviation during rolling of the dynamic vertical, de-

fined by (876), is ,,-_-_. Consider now simple rolling with an amplitude

• -_-_; by (863) the error will be:

z*_ (_÷P)P =
Z " (903)

This exceeds the value of x given by (900) by a factor

2 "+__LPK{ (904)
_a %=1"

If, for instance, • = 0.06 and _ = 0.04, then

•
so that in the example on p. 226 the error will be 29' instead of 54', which

was the value obtained in the case of simple rolling with an amplitude of

deviation of the dynamic vertical equal to 0.06 + 0.04.

The numerical solution of the exact equation (895) gives the following

value for the gyrohorizon error:

=: 0.0077 (26o5').

The approximate formula (900) is thus quite adequate.

It may be expected that complex rolling consisting of three or more

harmonic components will cause an even smaller error of the gyrohorizon.

This analysis remains valid also if the corrective moment is asymmetric

(Figure 182):

K_-K t for T>O,
, (905)

K_--K, for T<0,

FIGURE 182

with K,_=K s. In this case

p _--__ cos? _ _, (906)

and therefore an error remains during rolling even when the effect of the

Earth's rotation on the instrument is fully compensated.
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§ 2. The effect of the ship's yaw on the accuracy

of the gyrohorizon readings

A plane physical pendulum whose axis is perpendicular to the ship's

diametral plane, or a physical pendulum suspended in gimbals, have a

deviation toward the ship's bow during yawing of the order of one degree.

It would therefore appear that such pendulums are unsuitable for the cor-

rection of gyrohorizons and similar instruments when the latter are located

at a considerable distance from the ship's center.

In fact this is not so. Firstly the deviation of the gyrohorizon toward the

ship's bow during yaw is incomparably smaller than the corresponding devi-

ation of the plane pendulum. Secondly, and this is most important, there

exists no deviation of the gyrohorizon if its motion is referred to a coordi-

nate frame oriented by the points of the compass, i.e., if the frame does

not participate in the ship's yaw.

To prove these two assertions consider the simplest scheme of a gyro-

horizon consisting of an astatic gyro* with a vertical axis and the scheme

of two corrective pendulums. The pendulum axes are both parallel to the

ship's deck and respectively parallel to the longitudinal and transverse sec-

tions of the ship.

In order not to complicate the problem, we shall arbitrarily assume that

heel and trim are permanently zero, so that only the effect of the ship's yaw

on the gyrohorizon has to be examined.

Assume further for the sake of simplicity that the so-called linear law of

radial correction obtains : the moments applied to the gyro are proportional to

the angles of deviation of the corrective pendulums from their mean position.

Thus, a deviation of the pendulum whose axis is parallel to the ship's longitudinal

section will cause a moment proportional to this deviation and acting about

the axis parallel to the transverse section of the ship to be applied to the gyro.

Under these assumptions, small motions of the gyro about the vertical

will be described (Chapter IV, § I) by the following equations:

the friction in the suspension is neglected.

Here H is the angular momentum of the gyro; z and y are small angles

of deviation of the gyro axis from the vertical to starboard and toward the

bow respectively; a and _ are the angles of deviation of the corresponding

corrective pendulums from the vertical; K is the so-called curvature of the

correction characteristic; w(t) is the angular velocity of yawing.

We can simplify the problem still further by assuming that the angular

velocity of yawing varies according to a harmonic law

w (t):,_ ¢_ pt, (908)

and that, in addition, one of the points of the ship's longitudinal axis (the

center of yaw) has a uniform straight motion.

• A gyro iscalled astaticifthe center ofgravityof the system housingrotorcoincideswith the center

of the gimbals and if the center of gravity of the outer ring lies on its pivot axis.

232



If the instrument is located in the foreship near the diametral plane at

a distance I from said point, the angles of deviation of the pendulums from

the vertical will be determined by the equations

d_ l dw-d_ -}" -_ _ -_ Il dt _ sin pt,

J_+__, p= l _'(t)= .,'l ,-_ ---_- ---_-- cos pt,

(909)

where 11 is the length of each pendulum, and ctand B are assumed to be

small. Assuming that the natural oscillation frequency of the pendulum is

many times greater than the yaw frequency, the natural oscillations of the

pendulums will be neglected. We can then approximately write

• _ '_°Pl sinpt,
l

(910)

P= ,w: l.,' ,.:
-- --_ cos _ pt = - 2g 2¢ cos 2pt.

The mean values of g and p, representing the mean deviations of the
pendulums to starboard and,toward the bow, are by (910)

_av--_0 and Pav-----'--_-. (911)

Inserting (908) and (910) into (907) yields

H [-_f -- Woy cos pt ] = K(-_-- sin p' -- x) .

___ ©os_pt__¥). (912)

The functions z(t) and y (t), which determine the deviation of the gyro axis

from the vertical, can be obtained by solving (912).

It is easily seen that the general solution of (912) for the initial conditions

x (0) : Zo, y(O)--_y o (913)

tends to a harmonic :function of frequency p.

In fact, the general solution is the sum of the general solution of the

homogeneous system

H [ _-t -- _o y cos pt] -_ --Kz,
(914)

dv

and of a particular solution of (912).

Any solution of (914) tends to zero with increasing t. To prove this, we

multiply the second equation by i-_ _'_-_, add itto the first, and introduce

the complex function of t

z (t)= z (t)h- _Y (t). (915)

This yields the following differential equation:

dz
d'--i--_- (x -{- lWo Cos pt) z-_O. (916 )
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Its integral is

_ --_--_ _ sin _'

z (t) = Ce p ,

which tends to zero with increasing t, since

_= ax--->0.

(917)

(918)

It can be shown that among the particular solutions of (912) there exists

one periodic solution which will be the limit for any solution of this system.

An approximation of this periodic solution can be obtained by substituting

= = ao + al cos pt -_-b, sinpt,

Y = co Jr- fl cos pt -t- dl sinpt, (919)

in (912) and equating the free terms and the coefficients cospt and sinpt on
the left- and right-hand sides (higher harmonics are neglected).

The following equations for the determination of the coefficients ao, a u

b u c,, ¢s, d i are then obtained:

/w2
w,__y_fl =__Kad -_- a. =--K _--- Kc_,

pHb I -- moHCo= --Kay; pHd I -_- ebHao = --Kcx; (920)

-- pHa_ --_ K l-op _ Kb_; -- phil "_- --Kd a.
E

Equations (920) can be separated into two independent systems, one of

which is homogeneous. Their solution gives

ao -'-0' al= -- --_" .---_-" ,,2

b_ "-- l**0P . gt

• X2 + ( pS ws '+÷).,
_%' x,

c°=---_-" x,+(p,+_ )n'

Note that the second of expressions (911)

, c_=O, d:=O.

(921)

represents, as mentioned above, the mean deviation toward the bow of one

of the corrective pendulums caused by ship yawing according to (908).

At the same time, the corresponding mean deviation co, of the gyro axis to-

ward the bow is, according to (921), only a fraction of _av-

Numerical example. Let the yaw amplitude be T =0.05(3 ° ) and the
yaw period T =6.28 sec, i.e., p= 1 sec-1; then

= --" p_, cos pt = 0.05 cos t,
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andtherefore

If !=50m, then

C0 _ °

though a, is larger

%-_-- 0.05 sec-I

z.:
[pa_]=--_- = 0.0064.

The mean deviation from the vertical of the corrective pendulum is thus

considerable (about 0.4°).

On the other hand, even with a strong correction, for which

K
-- = x_ 0.01 sec-I
H

(921) gives the practically negligible value

lwoS K s
(0.0029,

/

.1 = 0.o0255(8n,).

The coefficient bI is also negligible (about 0.08').

In this case, the gyrohorizon motion can be approximated fairly accu-

rately to periodic oscillations of the gyro axis in the ship's transverse
plane, in synchronism with the forced oscillations of the corrective pendu-

lum in the same plane.

Consider now the gyrohorizon motion in the }_ frame oriented by the

points of the compass.

It is convenient to interpret the small angles formed by the gyro axis

with the }_ and _]_coordinate planes as the coordinates } and _ of a point G

lying on said axis, for which C_---z_-_ (Chapter IV, § 1, Figure 94).

Assume for the sake of simplicity that the ship's course is along the

_]-axis. Then
_x cos ? -- y sin 2,

(922)
_-----xsia ?-_y cos ?,

where _ is the yaw angle, and x and y are the coordinates of point G in

the xy coordinate system fixed to the ship, with the z-axis directed to star-

board and the v-axis toward the bow.

The coordinate x is, with an accuracy of up to third-order infinitesimals,

equal to the angle between the gyro axis and the ship's longitudinal plane,

and the coordinate y is with the same accuracy, equal to the angle between

the gyro axis and the ship's transverse plane. The angle between the y- and

n-axes, or, which is the same, between the x- and }-axes, is the yaw angle.

Equations (907) can be written

d_ d?

(923)
dy d?

_-t =o(t). (924)

where
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Differentiating(922)with respectto timeyields
d_ dz _ dW • d_ . ?0

(925)
d_ dz . . dl d? d_

-_F----_- sm ?-t--_- cos ? -_-z -_/- cos ? -- Y-N- sin _-

Multiply the first of equations (923) by cos?, the second by --sin?, and

add. Also multiply the first of equations (923) by sin?, the second by cos?,

and add. When (922) and (925) are taken into account, the result is

d_ -I- K_---- K (a cos ?-- _ sin ?),

(926)
H_3-4- K_:KCc, sin ?-l- 13cos _).

Equations (926) can also be obtained directly.

The natural frequency of the pendulums will, as before, be considered

considerably larger than the frequency of yawing. It is then easily seen

that

a-_-- # _tz ' _--'-_-- g _dt / ' (927)

since the deviation angles of the pendulums are determined respectively

by their centrifugal and tangential accelerations during the yawing.

If the expressions

?-_?osinpt and p?e_Q_, (928)

are substituted in (927), we obtain (910).

Since

d /d_ \

d ( d_ sin?_, (929)dad--_ sin ? + ( _-)' c°s ? = ff/','_ - /

inserting (927) into (926)yields

H-_--r- _------a_-_-_-_-cos .
(930)

H-_t "]-K_ =-K l d /_-fI,_i-d'sin" ,).

System (930) consists of two independent nonhomogeneous linear equa-

tions. The solutions of the corresponding homogeneous equations tend to

zero with increasing t. It is therefore sufficient to find a tSarticular solu-

tion of each equation. If ?--_?(t) is a periodic-function given by (928), one

of the particular solutions will be periodic and can be represented as a

Fourier series. The particular solutions of the two equations (930) are:

.-_ a; + a_ cos pt -_- b_ sin pt -_-... (931 )

_---__c'e-_-cl cos pt-3L d i sin pt-3t-... (932)

It is easily seen that a_ = c0 0. In fact, since the functions _, 1l, and ?
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are periodic,
F f

f d [ d, , [T=21¢_
[ d_ dt=O and j_-_--g/-cos?)dt-_O (933)

• @

and it follows from the first of equations (930) that

f

(934)

It is similarly shown that c_ = 0. This proves that during yawing the mean

deviation of the gyrohorizon relative to a reference frame oriented by the

points of the compass is zero.

An elementary explanation of this result can be given. The angles of

deviation ¢ and _ of the pendulums are proportional to the corresponding

components of the absolute acceleration of the point at which the gyro-

horizon is located on the ship. A spherical pendulum suspended at this

point would have the same angles of deviation to starboard and toward the

bow provided the frequency of its natural oscillations was, as in the case

of the corrective pendulums, considerably higher than the frequency of

yawing. Since the mean deviation of the point of suspension from the center

of yaw is zero, the average acceleration, the average velocity, and the aver-

age displacement of the pendulum itself, referred to a reference frame ori-

ented by the points of the compass and having its origin in the center of yaw,

will also be zero.

On the other hand, the mean deviation of this spherical pendulum refer-

red to a moving reference frame fixed to the ship will differ from zero be-

cause of motion of this frame.

The case of uniform rotation of the stationary ship about the center of

yaw is the simplest example. In such a rotation the pendulum deviates by

a constant angle toward the bow; in a nonrotating frame, however, the

pendulum axis will describe a cone, and its mean position will therefore be

the true vertical.

The same is true for the gyrohorizon, which in a certain sense takes up

the above-mentioned mean position of the pendulum.

In conclusion, the exact periodic solution of (912) is

where

znt.lll--__e P e"+' ](t)dt, (935)

] (t) i-- Tlw°P sin pt _ | _l _sS pt.

To carry out calculations with (935), it is necessary to apply the theory

of Bessel functions.

§ 3. The gyro top bow

The name top bow is given to the angle of deviation (Figure 183) of the

inner gimbal ring of the gyro suspension from its mean position at which
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the axis of the top is perpendicular to the pivot axis of the outer ring.

The top bow of a free gyro without corrective devices (except for com-

pensation of the influence of the Earth's rotation) varies inversely with its

speed. It has also been noted that the bow decreases with time during rota-

tion of the top, except when the gyro housings have no openings.

A theoretical explanation of this phenomenon is given in this chapter.

In order to simplify the investigation, the influence of friction in the gimbal

bearings (usually very small) and of the angular veloc-

_, ity of the Earth's rotation on the gyro will be neglected.
With a vertically disposed outer-ring pivot axis the

Earth's rotation can be neutralized by means of a

weight secured to the inner ring and by orienting the

top axis along the north-south line.

This study will remain within the framework of

the elementary theory of gyroscope precession (cf.

l Chapter IV, § 1); nutations will therefore be neglected.

_ Let _ be the angle of tilting of the outer gimbal ring

relative to its (arbitrary) initial position and _ the top

bow (cf. above). The corresponding angular veloc-

d_ d_
ities are _ and -_-_.

Fix to the inner gimbal ring a reference frame zyz,

with the z-axis oriented along the top axis and the y-

FIGURE 183 axis along the inner-ring pivot axis (Figure 184). Let the

orientation of the x-axis be such that the top rotates

counterclockwise when viewed from its positive direction. Assume that

positive values of _ correspond to a counterclockwise tilting of the inner ring

relative to the outer gimbal ring when viewed from the positive direction of

the ]/-axis. It is easily seen (Figure 184) that the projections p, q, and r of

the inner ring's angular velocity on the x-, _-, and z-axes, when the instru-

ment base is fixed, are
d_ . d_

P=-- _Tsm_ ' q ---=-aT '

d, cos _. (936)

da
The direction o_ the angular velocity _ is chosen so that the outer ring

tilts counterclockwise when viewed from the positive direction of the z-axis
if--90°_90 °. If_=0, the z-axis coincides with the outer-ring pivot

axis _.

The angular momentum vector of the gyr0 is, in accordance with the above,

directed along the positive z-axis. Its magnitude according to the theory of

gyroscope precession, is
H=Cm, (937)

where C is the moment of inertia of the gyro top about its axis of rotation

(the z-axis) and m is the angular velocity of the top relative to the inner ring.

Let us find the projections of the time rate of change of H on the x-, y-,

and z-axes. The projection on the x-axis represents the variation of Hin

magnitude and is therefore

C _-_. (938)
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Theprojectionsonthe y- and z-axes represent the change of the orienta-

tion of H together with the xyz coordinate system (i.e., together with the

inner gimbal ring). It is easily seen (Figure 185) that they are respectively

rH and --qH, (939)

as shown in Chapter IV, § 4.

_t

y

FIGURE 184 FIGURE 185

The angular momentuxn theorem of a mechanical system states that the

components of the rate of change of Hare equal to the moments Mm, Mj,,

M, acting on the top about the corresponding axes. It follows therefore
from (938) and (939) that

C_M=;

rH _ My; (940)

--qH--" Mx.

The momentM m consists, as shown in Chapter IV, §4, of the sum of

the moments due to two systems of forces:

1) those originating in the inner ring, including both the torque driving

the top".: and the resistance due to the inner ring. The latter includes

aerodynamic drag in addition to friction in the bearings of the top shaft;

2) the remaining aerodynamic forces not due to the inner ring.
The total moment about the top axis (the x-axis) due to the forces of the

second system opposes the top rotation. Assuming thatw_0, the moment

Ms is therefore

Ms_K--L , L_O, (941)

where K is the sum of moments of the forces of the first system, and L, the

sum of moments of the second system.

K is positive during acceleration and at constant speed and negative during

deceleration.

The moments My and M t are the sums of the moments about the corres-

ponding axes, caused by the reactions in the top shaft bearings. They may

also include moments due to aerodynamic drag; these, however, can be ignored.

* If the torque driving the top acts at the outer ring, certain changes will have to be made in the following
discussion.
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Theforceswhichactontheinnergimbalring originatein thetopand.
theoutergimbalring.

Thesumsof themomentsaboutthez- y-, and z-axes caused by the first

system of forces are, according to Newton's law of action and reaction,

res pectively
--K, --M r --M.. (942 )

The sums of the moments about these same axes caused by forces

originating in the outer gimbal ring are respectively

--M'., --M;, --M_. (943)

The moments acting on the outer ring and originating in the inner ring are

equal and of opposite signs:
M_, M;, M_. (944)

If the inertia of the inner ring is neglected in accordance with the theory

of gyroscope precession, it must be assumed that the sum of the moments

acting on the inner ring is zero:

--K -- M',=O,

--M --M;=O, (945)

--M,-- M; = O.

Note that

M' -----O, (946)

since M; represents the friction in the bearings of the inner-ring pivots
which is assumed to be zero.

The second of equations (945) yields therefore

M_-----O. (947)

Consider now the second of equations (940). Inserting the third of equations

(936) in the left- and (947) in the right-hand side yields

rH_---H_ cos _0, (948)

whence

• _-const. (949)

This means that the outer gimbal ring is stationary.
If the inertia of the outer ring is similarly neglected, the sum of the

moments about the k-axis (and also about the other axes) acting on this ring

must be zero. Since friction in the bearings of the ring pivots is neglected,

the equation of equilibrium of the moments about the k-axis (Figure 186) is

--M'. sin _]+ M_. cos _8--0. (950)

Aerodynamic drag has been neglected here.

Inserting the first and third of equations (945) into (950) gives

M,_Ktg_. (951)

Since according to (941) and the first of equations (940)

K = M.-_- L_C_-_ L, (952)
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andsinceaccordingto thethird of equations(940)andthesecondof equa-
tions (936)

dp
M== .--qH =--H-_-, (953)

we may write (951) in the form

dp
--H'_" = (C _'_"_-It" L) tg ,8. (954)

It may be assumed that the torque during acceleration and deceleration

M -- Cd--_-."
*_ dt

considerably exceeds the moment of external drag f-, so that the latter can

be neglected in (954). Using (937), we may write (954) in the form

dp dp _ dw. ^
H-_- = Ce_ _-_ '-- --¢,; -d-_-_g p, (955)

whence

_,cos 13a_ + sm _,z®=,z(,o sin p)= 0 (956)

or, integrating,

co sin p = w0 sin po= const, (957)

where wo and P0 are respectively the angular velocity and bow of the top
at the initial instant.

It follows from (957) that the top bow (the angle p) varies inversely with

the angular velocity _ of the top.

FIGURE 186

The instant at which the top starts rotating should not be taken as the

initial instant, since friction, which was neglected, plays an important

part at the beginning of rotation (i.e., at low angular velocities of the top),

for which the theory of gyroscope precession is not valid.

During steady rotation of the top

d__m=0. (958)
de

In addition, the moment of external drag (not originating in the inner girnbal
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ring) can be assumed constant. Equation (954) then becomes

dp
--H _T--_Ltg_. (959)

Integrating this equation under the assumption H = const yields

L

sin _ ._sin _o e-_'s , (960)

where _0 is the top bow at t_0.

It follows from (960) that the top bow must gradually decrease during

steady top rotation. For tops with completely enclosed housings L-_-0, so

that this phenomenon will not be observed.

The results given by (957) and (960) can be obtained far more simply by

direct application of the angular momentum theorem to the mechanical sys-

tem containing the top and the two gimbal rings. In fact, the forces of

interaction between the gimbal rings, and between the rings and the top, are

# ,L

FIGURE 187 FIGURE 188

internal forces in this system and therefore do not affect its angular mo-

mentum. If the influence of friction in the bearings of the outer-ring pivots

is neglected, the only external moment about the t-axis (Figure 187) will be

the projection of L on this axis:

M_=Lsin _. (961)

On the other hand (Figure 188), the projection of the angular momentum

vector on the t-axis is (under the assumptions of the elementary theory of

gyroscope precession),

He _ --H sin _. (96 2 )

The angular momentum theorem states that

ddt Hi--Mr (963)

Inserting (961) and (962) into this equation yields

d (Hsin _)_Lsin _. (964)
dt

When the rate of variation of His large, such as when the top is started

or stopped, the right-hand side of (964) can be taken as zero. Inserting

(937) into (964) leads in this case to the result given by (957).
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The geometric meaning of this is that the projection of H on the C-axis

has a constant value. Obviously, the greater the magnitude of the vector H

(Figure 188), i.e., the greater the angular velocity _ of the top, the smaller

is the angle _, i.e., the top bow.

During steady rotation of the top

H = C_ coast. (965)

Using this expression, the integration of (964) leads to (960).

The more difficult derivation at the beginning of this section was given

in order to expose the interplay of forces in the gyro gimbals. A similar

derivation may be useful in other cases of gyroscopic systems; in particular

such a method was used for setting up the equations of motion of the heel

equalizer in Chapter IV, § 4.

§ 4. The errors of the gyroscopic

apparent-velocity meter

This short section analyzes an instrument used on moving objects for the

measurement of the so-called apparent velocity. This analysis will illus-

trate how second-order infinitesimals are allowed for in the theory of gyro-

scopes.

FIGURE 189

z:z

zlff _p

FIGURE 190

The instrument gyro (Figure 189) has a statical unbalance relative to the

housing axis. A torque which maintains the rotor axis perpendicular to the

plane of the outer ring is applied by means of an electric motor to the outer-

ring pivot axis. The motor is controlled by means of a contact device lo-

cated on the housing axis. The gyro has a precession about the outer-ring

pivot skis caused by gravity and the inertia of the moving object. The cor-

responding tilting angle is one of the input data of the system controlling the

object's motion.

When the instrument was tested on a stationary inclined base, it was found

that the constant angle between the gyro axis and the perpendicular to the

plane of the outer ring has a considerable influence on the precession period.
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Thisphenomenonis easilyexplainedtheoretically. Let 0betheangle
of deviationof theouter-ringpivotaxisz from thevertical _, andintroduce
acoordinatesystemx'y'z' fixed to the instrument base (Figure 190); the z'-
axis is oriented along the z-axis of the outer gimbal ring, the z'-axis lying

in a horizontal plane perpendicular to the vertical plane containing the _-

and _-axes.

Let a coordinate system xyz be fixed to the outer gimbal ring, the z-axis

coinciding with the z'-axis, the y-axis being directed along the pivot axis of

the gyro housing. The angle between the z- and x'-axes is denoted by ?.

Lastly, let _ be the angle of deviation of the gyro rotor axis from the z-

axis, i.e., from the perpendicular to the plane of the outer gimbal ring.

The precession about the outer-ring pivot axis causes a moment about

the housing axis (the y-axis) due to gravity. This moment is given by

Ml_zPm_zPa, (966)

where z and z are the coordinates in the zyz system of the gyro's center of

gravity, and P, and Pz are respectively the projections on these axes of the

force of gravity. Obviously

z_acos_ and z_asina, (967)

where a is the distance from the gyro's center of gravity to the geometric

center of the gimbals.

To find the projections of the force of gravity on the axes z, y, z, we note

that its components along the axes _, y', z' are respectively (Figure 190)

O, PsinO, _PcosO. (968)

The last of these is also the projection of P on the z-axis. In order to find

the projection of the force of gravity on the z-axis, it is necessary to pro-
ject on this axis its component along the l_-axis; the following expression
is then obtained:

Pro-- _P sin 0 sin ?. (9 6 9 )

The moment M_, given by (966), can therefore be expressed in the form

M_, = Pa (cos _ cos O-- sin 8 sin Osin ?). (970 )

According to the theory of gyroscope precession, the moment M_ is equal

to the y-component of the rate of change of the gyro's angular momentum,

given by
d_

H cos _--_-. (971)

The following differential equation is obtained by equating (970) to (971):

cos _ d_ _--"Pa (cos _ cos 0 -- sin _ sin 0 sin ?). (972 )H

Separating the variables and integrating:

(973)
-- Pa J _tcosO--sintsinOsinsP •

The period of precession T is obtained by integrating between the limits
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?_0 andy_2,_; this gives, for constantanglesOand8:
2t

[ d? H 2_
T--Pacos0 j i--tg_tgOsin? --Pacos0"qi_(tg6tgO)s (974)

0

The result is a generalization of the well-known formula for the preces-

sion period of a heavy top. In fact, when 0_0 (vertical axis of precession)

T 2zRo-----_-;-, (975)

which is independent of _.

For 0=/=0, the precession period increases with _ irrespective of its

sign, as was found experimentally.

The following series expansion can be substituted with sufficient accu-

racy into (974):

! --_ t -J- t tgl_ tg' 0 --N t -J- t S' tg' 0. (976)
¢I -- tgs8 tgsO

The result obtained by this substitution can also be derived with the aid of

the binomial theorem:

b k

&?
[ i--tgltgOsin? _--'I[l-_-tg_tgOsin?-_-(tg_tgOsin?)S]d?--'--
0 0

_-- 2,,-!-,, tg, S tg_ O. (977)

Numerical example. Assume 0=45°and _=0.07 (--4°); the pre-

cession period is then obtained from (974), (975), and (976).-

T _--_(t nui 8'tgSO)2 _'-_--f--2""__t.0024 T.__f.i.

The error when _ is assumed zero is thus only 0.25%.

Therefore, to ensure proper functioning of the instrument, the range of

variation of _ should be small.

The instrument error can be similarly found when the center of gravity

of the system housing top does not lie on the axis of rotation of the top.

$ 5. Precessional oscillations of a gyroscope

acted upon by a load

Monogyro systems with a stabilizing motor (Figure 191) are widely used

for stabilizing various devices about an axis. The gyro housing of such a

system is free to rotate with minimum friction in the outer-ring bearings.

When the gyro deviates from its mean position in which the rotor axis is

perpendicular to the plane of the gimbal ring, an electric motor connected

to the gimbal-ring pivot is started by means of a contact device. The

torque developed by the motor is directed so as to cause the precession in-

duced by it to return the gyro to its mean position.

Periodic oscillations of the gyro housing relative to the gimbal ring are

observed in such gyroscopic systems. The frequency and amplitude of these

oscillations depend to a considerable extent on the so-called destabilizing or

load moment applied to the outer gimbal ring.
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The frequency is considerably less than that of the nutational oscillati<ms

of the system, which is of the order of the angular velocity of the rotor. In

the theoretical study of such phenomena, it thus suffices to

consider the precessional oscillations within the limits of the

elementary gyroscope theory.In addition, clearances in the transmission from the motor

_-_ to the gimbal ring, friction in the bearings of the gyro hous-
ing and the gimbal ring, extra currents in the contact devices,

'i and other secondary factors may also be neglected.

The motion of the gyro housing relative to the outer ring is

in this case given by the following differential equation:

dz
H-g_ _M-- Ko (978)

where H is the angular momentum of the gyro; z is the angle

of deviation* of the gyro housing from its mean position; M
is the magnitude of the destabilizing moment, assumed to be

FIGURE 191 constant; and K is the torque applied to the gimbal ring by
the electric motor.

Since the motor is of the squirrel-cage type, it can be as-

sumed that the torque K varies according to a specified law ]during the

transient process of switching-on]

K_?(t). (979)

The time origin tm_0 corresponds to the instant at which the contact device

is triggered. The torque of the motor becomes zero when the contact is

opened if the breaking extra current is neglected.
It will be assumed that the transient process of switching-on is mainly

determined by the inductive resistance of the motor armature. In this case

(,)= r,(,-.- (980)

where K, is the steady motor torque under short-circuit conditions, R is
the ohmic resistance, and L the self-inductance of the motor armature circuit.

When the intermediate relays and amplifiers have considerable lag times,

the function _ (t) will have a more complex form. This does not, however,

render the determination of the frequency and amplitude of the gyro oscilla-

tion more difficult.

According to (978), (979), and (980), the following equation will apply

during the time the contact device is closed:

dz
H _-_ M -- K, (t -- e--_t), (981)

where

R
• -_-. (982)

Integrating (981) yields

Hx = -- (K, -- M) t -- -_ • --°t "JrC. (983 )

The contact device is triggered in the mean position of the gyro housing.

It follows thatz_-_0 at t_-_0. Inserting these initial conditions into (983)

* [Apparently about the outer-ring pivot axis.]
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gives

C_---_-. (984)

Inserting (984) into (983) leads to

,//

_Z]_ = = t ___-d__ (t -- F) =t, (985)

where
M

i_---_-_-=. (986)

Equation (985) defines the gyro motion up to the instant t._t= at which
the angle z becomes again zero. It is easily seen that the precession

period can be determined from

t --¢"_ 1 -_- F--_ O, (987)

where

_j==tr (988)

In fact, the motor torque becomes instantaneously zero (if the circuit-

breaking extra current is neglected) immediately after the contacts are

opened, and the gyro starts moving under the action of the destabilizing
moment M in the direction of increasing angle z. The contacts are rapidly

closed again, and the action is repeated.

An interesting fact is that the period t_ is independent of the gyro's

angular momentum H, and is determined only by the parameters

M R
F-_'KI and ='---L-"

These characterize the relative load on the motor due to the destabilizing

moment (K 1 is the maximum torque which the motor can develop) and the

electric properties of the armature circuit.

The maximum deviation z. of the gyro from its initial mean position is

obtained at an instant t_---t= at which the speed of precession becomes zero.

The following equation is obtained from (981) for determining tin:

M wKl(| mr_.)__0, (989)

whence follows, using (986),

t ----t !_ (1--1_}- (990)
m_ a

Inserting (990) into (985) gives the following expression for the maximum

deviation of the gyro:

==,= =-_ [F _- (t -- F) in (t -- F)]- (991 )

Table (993) gives the values of

(992)

calculated from (990) and (991) and by nmnerical solution of (987) for differ-

ent values of _(0<_<|). Curves representing these values are given in

Figures 192 and 193.
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0.05 0.i03 0.05i 0.00i3
O.tO 0.213 0.105 0.0052
0.20 0.464 0.223 0.02i5
0.30 0.762 0.357 0.0501
0.40 1.t26 0.511 0.0535
0.50 i .534 0.693 0.153
0.60 2.231 0.9i6 0.234
0.70 3.197 i .204 0.339
0.80 4.965 1.609 0.478
0.90 I0.0 2.303 0.670
0.95 20.0 2.998 0.800

The following approximations are true for small values of _:

(993)

(994)

FIGURE 192 FIGURE 193

Numerical example. Assume thatH =5000gcmsec, M=40 gcm,

KI= 50 gcm, ,, = 5 sec-1; it follows then from (986) that

M
_ = _-/--0.8

and therefore, according to Table (993)

_l _ 4.965, _. _ i.609, _. _ 0.478.

It follows from (992) that

z.---g_ _. _ 0.000956 (3.3_, tl--_ _- _ 1 sec.

In the given case the gyroscopic stabilizer will undergo about one oscilla-

tion per second.

Figure 194 gives curves of the gyro motion in the _ plane for several

values of the parameter _. These curves represent to a scale of 1: K---L

the angle z defining the deviation of the gyro from its mean position and to
L

the scale of 1: _- the time f.

In the general case, in which after the closing of the contacts the motor

develops a torque according to an arbitrary law (979)

K=v(t),
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the integral

#

](t)= s ?(t) dt (995)
o

has to be plotted and a straight line of slope M to be drawn through the

origin. It follows from (978), that the difference between the ordinates of

the curve and the straight line represents Hz, and is therefore at every

instant proportional to the angle of deviation of the gyro. The abscissa of

the intersection of these lines determines the period of the precessional

oscillations of the gyro.

t

0.2

0.1

FIGURE 194

When the gyro housing is tilted in relation to the outer ring, friction in

the bearings of the housing pivots causes a precession of the gyro about the

outer-ring pivot axis. Let F be the moment due to Coulomb friction in the

housing bearings. Its direction varies together with the precessional veloc-

dz

ity _- of the gyro about the outer-ring pivot axis.

It follows that the outer ring will tilt to one side by an angle

P-_- t. (996)
H

in the time interval (0,tin), and to the other side by an angle

F (tz__ t,,) (997)
/L

in the time interv_.| _, tl).

The expression

d_ _ F 2t.--tz_ F 2_--'q (998)
"_ _'H- " t z H _z

represents the mean angular tilting velocity of the outer ring. The instants

tm and tz are determined by the destabilizing moment. The angular tilting

velocity of the outer ring thus depends on the load acting on the gyro (Z. M.

Tsetsior).
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§ 6. Influence of vibrations on the accuracy of

gyroscopic instrument readings

Systematic errors are sometimes observed in the indications of gyro-

scopic devices tested on a vibrating base. This contradicts the widely-

held opinion that vibrations have a positive influence on the operation of

gyroscopic instruments, since they reduce friction in the gimbals of the

sensing elements, replacing vibrating or revolving bearings frequently

used for this purpose.

It will be shown below that vibrations can greatly reduce the accuracy of

gyroscopic instruments. This is due to the elasticity of the gimbal element

and the housing cover, and to the almost unavoidable clearances in the rotor

bearings.

Due to the component of inertia forces, directed along the rotor axis,

the center of gravity of the gyro deviates periodically from the geometric

center of the gimbals; the other components cause spurious precessional

moments which lead to gyro wander.

To illustrate this phenomenon, consider the wander of a directional gyro

caused by the vibrations of its base (Figure 195).

Z

fl

Y

FIGURE 195 FIGURE 196

Fix to the outer gimbal ring of the gyro a coordinate system xyz (Figure

196), the z-axis lying along the ring pivot axis, the x-axis along the hous-

ing pivot axis, and the y-axis perpendicular to the two.
Let the vibrations of the base be such that if the gimbals were absolutely

rigid their geometric center would undergo harmonic oscillations along a

straight line. This motion can be resolved into three harmonic motions

along the axes 2, ]/,and z. The accelerations of these component motions

are respectively ws-_.--_a_ ¢,,t,

wy-----_b cos _, (999)

Wt _ _*.2¢ cos gt,

where a, b, and ¢ are the amplitudes of the component oscillation motions,

and w, the frequency.
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Theseaccelerationsdeterminetheinertia forcesof translation:

P,=--rnw,, Py=---mw,, P,=--mw,. (1000)

The force P# does not affect the gyro readings. The force Pv causes a

periodic variation of the position of the rotor's center of gravity relative

to the pivot axis of the housing. If the mass of the housing and the elasticity

of its pivots are neglected, only the rigidity of the cover being taken into ac-

count*, the axial shift of the center of gravity of the rotor will be

w|
lq_n#_w t b cos wt, (1001)

where n is the frequency of the rotor's natural oscillations in the axial di-

rection, determined by the elasticity of the housing cover (all the other

gimbal elements are assumed to be absolutely rigid and the axial clearance
to be zero). Formula (1001) follows from the differential equation of the

axial vibrations of the rotor:

m _.J_ K_l=ps =mwtbcoswt. (1002)

Here m is the rotor mass and K, the spring of the housing walls together

with the rotor bearings at axial displacements of the rotor. Obviously

K =n*m. (1003)

When the rotor's center of gravity is displaced (Figure 196), a moment

w4
M_ = _Pz = m bc nS -- **--"---Tc°sl_t. (1004)

appears due to the force P,, causing precession of the gyro about the vertical

axis at a mean angular velocity
robe w4

(1005)
wz_---2H nZ--w2 '

where H is the gyro's angular momentum.

The precession is in one direction for n_, and in the opposite direc-

tion for n _to. This was found experimentally.
Clearances in the axial direction of the rotor bearings has a quantitative

influence on the phenomenon; essentially, however, it remains the same.

We thus see that rigid construction of the gyros and their gimbals and

proper assembly are very important for obtaining high-accuracy in gyro-

scopic systems.

§ 7. Theory of follow-up systems

Contemporary control instrunlents are complex systems of gyroscopic

and computing units having many additional devices; important among them

are the follow-up systems.

The function of follow-up systems is to reproduce with satisfactory ac-

curacy the angle of rotation (or the shift) indicated by an instrument (in par-

ticular gyroscopic)without applying to it forces liable to affect its readings.

* It can be shown that there is no gyro wander during vibrations when the rotor is equally elastic in the

U and z directions.

251



A poorly functioning follow-up system can greatly reduce the accuraoy

of gyroscopic precision systems. It is therefore necessary to analyze the

processes occuring in follow-up systems and in their components; this re-

quires a suitable mathematical theory.

Some simplifying assumptions regarding electrical and mechanical proc-

esses taking place in the follow-up system and the laws governing them have

to be made; the correctness of these assumptions has to be determined ex-

perimentally.

In spite of the extensive literature dealing with the general theory of

follow-up systems, it is useful to outline such a system (Figure 197).

FIGURE 197

The pick-up P feeds to the amplifier A a voltage u which is a function of

the angle of misalignment of the system

% -- 81, (I 006 )

where % is the angle of rotation of the pick-up P and 61 the angle of rotation

of the load L. [Actually it is the comparator (or mixer) which feeds the

voltage. ]

The voltage v obtained at the amplifier output is fed to an electric motor

M in such a way as to make the armature rotate in the direction of decreas-

ing misalignment angles.

For small misalignznent angles a linear relationship between the latter

and the input voltage

u __._ks (?l__ 01), (1007)

can be assumed.

The angle of rotation of the motor armature is related to 01 by the

equation 0 _1_,, (1008 )

where /" is the transmission ratio (usually ] _ |).

Expression (1007) can be written

u=k(?--0), (1009)

where

_ =]?,, kl _---]'k" (I010)

The relationship between the input and output voltages can be represented

as a first approximation by the following differential equation

dv
• -_- ._- 0 _ _a, (I011)
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where v is the amplifier output voltage, _, the so-called time constant of

the amplifier, and }_, the constant-voltage (static) amplification factor.

When a constant voltage tt _ tt 0 is applied to the amplifier input, a con-

stant voltage v _ v 0 _ }tit0 is obtained at its out put at the end of a transient proc-

ess during which the voltage increases according to (1011) by the exponential

_- . (1012)v v, t--e -_"

If u varies according to the harmonic law

u_uesln pt, (1013)

integration of (I011) will give the following law of variation for the output

voltage:
v--m- v° sin (pt-- 8), (1014)

where

_.-_ +_, gg e ._ ]_:. (1015)

It is thus seen that the output voltage v varies according to the same

sinusoidal law as the input voltage u, but with a time lag

fl_ --_'. (1016)
P

The time lag tI between the input and output voltages decreases with in-

creasing frequency p; the phase shift e tends toward the value _-, and the

amplification toward zero. The following approxixnation is valid for low

frequencies p (more precisely, for small values of the product/_):

/_= tge_e (1017)

whence

t,_,, v__l_sinp(t_,). (1018)

The relationships between input and output voltages u and _ in the ampli-

fiers used in practice are considerably more complex than equation (I011),

which is nevertheless sufficient in many cases involving narrow ranges of

variation of the frequencies p.

After ve and i have been determined experimentally, the parameters [_

and • can be obtained from

ll, g (1019)

which follow from (1015).

If the motor _ is a dc separately-excited motor, the equation of the

electric circuit of its armature is (neglecting the armature self-induction)

v----/i't q- C do"_'. (1020)

where R is the ohmic resistance of the circuit, C, the coefficient of the

motor counter emf, and 0 the angle of rotation of the armature.

Since the torque of a separately excited dc motor is proportional to the

armature current l, it follows that

dtO C
l -ffii _- .-i- f -- N , (1021)

where [ is the moment of inertia of all revolving parts of the follow-up

system referred to the motor axis; iV, the moment of resistance to the
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armaturerotationdueto theloadandfriction; g, the gravitational ac-
celeration.

The resistance moment N is practically independent of the armature

Je
angular velocity _-/-,but is determined by its sign. If the pick-up P rotates

in the same direction at constant speed, load L also rotates without chang-

ing direction when the follow-up system functions smoothly. It can then be
assumed that

/V'_ ¢onst. (1022)

Under these assumptions the operation of the follow-up system is de-

scribed by the following equations:

,_= k (_ -- 0);

m, + v--ira;
de (1023)

v=Bi-}-C d--i-;

C
1 -g_2-_---i-l--N.

The following equations are obtained by eliminating _ from the first two and

the current intensity | from the last two of equations (1023):

dhp

(1024)
Cs d! C ..--

RI _ + -i--_=-i-v-- _n.

If the pick-up rotates uniformly, that is if

T'-" _, (1025)

the load will rotate after attenuation of the transient process according to
the law

0=0'+_. (1026)

Assume that during the transient process the load rotates without chang-
ing direction, so that (1022) remains valid.

Also assume

v=v°+ _, 0 =.t -_- _--}- O, (1027)

where v o and 0° are given by

v0= --/_P,
Ct
--w= -_-C_--NR. (1028)
l l

Inserting (1027) and (1025) into (1024) and using (1028):

dw

d'! Ct d| e _ (1029)

RI _ + 7 _----/-_.

These equations define the time variation of $ and 0; these magnitudes re-

present the deviations of v and 0 from their limiting steady values

v=v e , 0 _-_ _--_ _. (1030)
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It'follows from (1028)that

_ = Cm-{.-(-_-_.,
(1031)

+
The magnitude _ represents the error of the follow-up system at steady

operating conditions. It consists of the so-called velocity error [the steady-

state velocity lag]

_-,t, (1032)

which is proportional to the angular velocity of the pick-up, and of the

static error

_ IRN
-- k-_' (1033)

which is determined by the resistance moment N.

The follow-up system will function satisfactorily only if # and 0 tend to

zero for any initial conditions. The system is called stable if this condi-
tion is satisfied.

The determinant of the set of differential equations (1029) is

c_# Rlk'--_- Ca x]=ae).t-[-at_.z 2ratx-.l-as=O, (1034)-i-,

where

,CZ CZ klAC
a,=_RI; az=RI-{-_-; az=-_-; as--_--i-. (1035)

A necessary and sufficient condition for the decrease with time of all

solutions of (1029), and therefore for the stability of the follow-up system,

is (for positive coefficients (1035)) that the stability condition

star>seas, (1036)

be satisfied.

Inserting the values of the coefficients given by (1035) into (1036) yields

(RI ,CZ CZ lqU7+ --/-)T >,RI T, (1037)

which can be reduced to

<" (1038)
If the left-hand side of (1038) is negative, i.e., if

C_ _> I¢_gRl, (1039)

the system will be stable for any value of _. This condition is, however,

almost unattainable.

In fact, it follows from (1032) that in order to ensure a sufficiently low

velocity error of the follow-up system the coefficient C must not be ex-

cessive, since the product k}_ is limited by the amplifier output voltage _.

Actually, fulfillment of stability condition (1038) necessitate_ a time

constant • so small that it can sometimes be attained only by means of
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additional amplifier circuits (this is the case with magnetic amplifiers, as

in the numerical example below). These additional circuits (the so-called

feedbacks) may cause unstable operation of the amplifier itself, and usually

require very careful adjustment.
Numerical example. Assume thatI = igcmsec 2= 0.00001kgmsec2;

C=0.25vsec; R =35_; k_ = 16 v (the amplifier output voltage is 115 v for a

misalignment angle _Im01 = 0.002 and a transmission ratio /"= 3600).

For these values

k_ C, 64--!8.2_---45.8
C IRl --

Stability condition (1038) is satisfied if

<_0.022sec.

The time constant of a magnetic amplifier is considerably larger (of the

order of 0.1 -- 0.2 sec).

A method for reducing the amplifier time-constant will now be considered.

It consists in applying the amplifier output voltage _ to the primary of a

transformer T, the voltage obtained from its secondary being applied to the

amplifier input (see Figure 198).

juu 
FIGURE 198

The influence of the amplifier input circuit on the transformer second-

ary can be neglected, so that the magnetic leakage flux need not be taken

into account; the equations of the transient processes in the transformer

primary and the secondary are then respectively:

where

Here

|1,

nl,

RI,

|s,

n|,

R,,

d@
v = Rll,nu n, _,

dO
O_ RJ, + n,_i- ,

(1040)

Ms

= M (nil I _- nJJ. (1041 )

is the current intensity in primary;

the number of turns of primary;

the ohmic resistance of primary circuit;

the current intensity in secondary;

the number of coils of secondary;

the ohmic resistance of secondary circuit;

the magnetic flux (when an air gap exists in the magnetic circuit of

the transformer);

the mutual inductance.
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_Iultiply the first of equations (1040) by n s, the second by n l, and sub-

tract the second from the first. The result is

vn s --_ nlRli z _/t_tf 2. (1042 )

Inserting (1041) into the second of equations (1040) yields

R2ts-lt- ntM _ (nata .-it-ntit) O. ( 1 O4 3 )

Substituting the expression for i I obtained from (1042) we obtain

dtz _{_ 12 _ --h doo-_ _-, (i044)

where

a=M( n_ .4_ n: _ h__Mn,. , (1045)
It,]' "" _ It,l_,"

Let R be the resistance of the load on the transformer secondary. The

additional voltage fed to the amplifier input is then

u'_-----Rlt, (1046 )

if the terminals of the transormer secondary are suitably connected.

When this feedback exists, (I011) is replaced by the following two

equations :
do

•_ + v= t"(u--Ri,),

dit--, z do (1047)
o-_- -1-t2_--n-j7.

Eliminating i_ between these two equations reduces them to the following
second-order differential equation

d_o __, __ do dn
_-/i t Wt'- a) -J7nuv=_(u'-_'_-g)" (1048)

where a denotes the parameter

a _ }*Rh ._- _R Mnln t (1049 )
RIRs

Replace the second of equations (1023) by (1048). The following two dif-

ferential equations are obtained in the same way as (1029):

d___. __ d_ d6
az_t t° t z-- a)-_ -]- _ _- --]t_(a_i- -it- 8),

(1050)
_,e O a8 C___.

nl _i-_+ -i_-i= s

These equations describe small perturbations of the steady motion of the

follow-up system, given by (1030).

In the case of feedback, the first of equations (1050) is called the ampli-

fier equation and the second the motor equation.

When

a-_-_a, (1051)

undamped oscillations of frequency

!

q= a--_--_' (1052)
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can appear in the amplifier circuits if the influence of the right-hand si'de

of the first of equations (I050) is small.

This is in fact, usually the case, since q is relatively large so that the

torsional vibrations of the motor shaft are almost unnoticeable; the clear-

ances prevent the transmission of vibrations to the load.

These oscillations of the follow -up system are electrical oscilla-

tions. When

a > a--_-'_, 11053)

oscillations of a frequency close to q are established in the system.

Another type of oscillation, mechanical oscillations, is char-

acterized by large amplitudes of the torsional vibrations of the motor shaft

and by a considerably lower frequency p. This frequency can be determined

approximately by neglecting all transient processes in the amplifier circuit

and writing

_ __. (1054)

Inserting this into the second of equations 11050) gives the frequency if

the term containing the first derivative of 0 is neglected,

p_ _/_. (1055)

The condition for the absence of mechanical oscillations can be obtained

by means of the following considerations.

When the frequency p is relatively low, the term in the first of equations

11050) containing the second time derivative of # can be neglected. In addi-

tion, when a is small, the following relationship is obtained:

(_-- a) _'_- -31-# =--klL0. (1056)

This equation differs from the first of equations (1029) only in that the time

constant ¢ has been reduced by a. The stability condition (1038) can now be

replaced by the following approximation:

(_-- a) (
kls
C _')_ |" 11057)

Cs

If this condition is satisfied, no mechanical oscillations occur.

rf the amplifier has a relatively large time constant % the magnitude of

a should be close to that of • in order to ensure the stability of the follow-

up system, i.e., in order to satisfy (1057).

Since a is usually small, a small variation of a may cause (1053) to be-

come true, leading to electric instability.

The permissible range of variation of a is thus very narrow, a fact which

makes adjustment of the follow-up system difficult.

Both types of oscillations are easily observed during this adjustment.

The values of the frequencies of these oscillations at their discontinuity

boundary can serve to determine the various parameters of the follow-up

system, and also as a check of the validity of the simplifying assumptions

made above.

A stricter treatment of the same problem requires a study of the stability

condition of 11050),
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"Expanding the determinant of this system:

X'-} °'+¢P+P°-'_ X=-}-°+¢+i'--* X=-F

I +ore X_--_---0,

where
fIR

(the so-called mechanical time constant) and

The Routh-Hurwitz criterion for (1056) is:

where

/(a)=at_ ,,(s +o,,,-2P=)+mO+_) =-b
ptm _ I' _ I'om

+ (! + m°)%s--*lst(Iptm-- p - l,m+n°)+s_ <0,

(1058)

(1059)

(1060)

(1061)

sl=p-bo -}-_;

ss--_ °_ -}- _P -P Po; (1062)

If (1061) is satisfied, the follow-up system is stable.

If the quadratic equation for a

](a)---O (1063)

has two real roots aI and at, undamped oscillations of the follow-up system,

corresponding to each root, are possi_ble at the stability limit. Mechanical
harmonic oscillations of the system, of frequency p, correspond to the

smaller root, while electrical oscillations of frequency q correspond to the
larger root.

If equation (1063) has no real roots, the follow-up system cannot be stable

for any value of a. In order to obtain stability in this case it is necessary

either to vary other parameters of the system or to use different feedback
schemes.

The values of p and m in the example given above (p. 256) are

P IrR
=--&--_0.0549, m= _---_=64.

Let the amplifier time constant be _ = 0.05 and the feedback circuit time
constant a = 0.001.

For these values equation (1063) has the roots

aI= 0.0295 and al_ 0.0509.

The follow-up system will therefore be stable

0.0295 <_ a < 0.0,509.

It follows from (1057) and (1051) that

!

"d--- a--_"

259



or

0.0282 < a < 0.05t0.

The following pairs of imaginary roots are obtained from (1058) for a

equal to a_ and as respectively:

_,_= -t- i29.4; L_= ± ti37.6.

The first pair of roots corresponds to the frequency of mechanical oscil-

lations

p-_-29.4sec-1

the second, to the frequency of electrical oscillations

f----- t37.6 sec -s .

The approximations (1055) and (1052) gives the following values:

k_C m l
p=_=V_=34sec-1, q---_ a---_-=|"sec-1.

This numerical example thus confirms the correctness of the approxima-

tions made above.

The methods used in this section to simplify the equations describing the

behavior of follow-up systems can also be applied, exactly as the methods

used in Chapter V, § 2, in the study of other oscillatory processes.
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Appendix 1

THEORY OF COMPLEX GYROSCOPIC

STABILIZATION SYSTEMS*

The equations of motion of complex gyroscopic systems are usually es-

tablished by the Lagrange method of the second kind**. While this method

has its undoubted advantages, it is very cumbersome and frequently obscures

the physical meaning of the equations obtained.

On the other hand, with a certain amount of practice it is comparatively

easy to form the equations of motion of complex gyroscopic devices by ap-

plying the angular momentum theorem successively to the mechanical sys-

tem of the device as a whole and to its separate components. The present

paper is devoted to a description of this method, using as an example the

study of a system of power gyro stabilization.

1. After attenuation of a transient process, the motion of gyroscopic

systems used for stabilization usually becomes a slow change in the orienta-

tion of the gyros' axes relative to the Newtonian frame. This is usually

called precessional motion.

The angular momentums of the gyroscopic-system suspension elements

and of the housings of its gyros, the equatorial components of the angular

momentums of the rotors themselves, and the angular momentums of the

motor armatures can be neglected in the study of a precessional motion.

The polar angular momentum components (directed along the axis of rota-

tion of the gyro), can be taken as the product of the axial moment of inertia

of the gyro rotor and its angular velocity relative to its housing.

The above-mentioned assumptions lead to the so-called elementary

theory of gyroscope precession. The equations describing the motion of

the gyroscopic system are considerably simplified when these assumptions

are made: in particular, their order is reduced. At the same time, the

accuracy of the results obtained by the elementary theory is completely

adequate, except in special cases when the influence of the gimbal-ring
inertia must be taken into account.

Transient processes in gyroscopic systems can be investigated only if

the angular momentums of all parts are taken into account; the equations

of the elementary theory are insufficient for this.

2. When the angular momentum theorem is used to obtain the differ-

ential equations of motion of a gyroscopic device, the composition of the

mechanical system to which it is to be applied must first be stipulated

clearly.

* PMM, Vol. 22, No. 3. 1958.

** Krylov, A. N. and Yu. A. Krutkov. Obshchaya teoriya giroskopov i nekotorykh tekhnicheskikh ikh

primenenii (General Theory of Gyroscopes and Some Technical Applications). -- Leningrad, Izdatel'stvo

AN SSSR, 1932.
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The angular momentum and its derivative must be determined relative

to a reference frame _*_l*_* having a translational motion; this frame must

also be clearly defined. We shall call it the basic reference frame. The

forces of inertia due to translational motion acting on the mechanical system

considered, have to be calculated relative to this basic frame. These forces

can be replaced by their resultant. Its line of action passes through the cen-

ter of gravity of the mechanical system, and its direction is opposed to that

of the acceleration of the basic reference frame relative to the so-called ab-

solute reference frame _.*_*_6"" The origin of the latter is located at the cen-
ter of mass of the Universe, and its axes are oriented according to the

Newtonian frame.

The resultant of the inertia forces is obviously equal in magnitude to the

product of the mass of the mechanical system and the acceleration of the

basic reference frame.
In the general case, the basic reference frame may be any frame _, not

necessarily having a translational motion. However, if this basic frame _

rotates relative to the absolute frame _*_*_.* the problem of allowing for the
inertia due to translational motion is greatly complicated. Coriolis forces

then appear which must be considered as external forces acting on the sys-
tern. Coriolis forces occur when the basic reference frame has a transla-

tional motion.

3. Let a given reference frame _*_*_* be selected as basic reference

frame, and let G be the angular momentum of the mechanical system con-

sidered relative to this frame which has a translationalmotion. It follows

from the angular momentum theorem that

dG_, _ dG , dGC*
--_- = M_,, -_t" = M_,, _---_ = M_,. (I)

The left-hand sides of these expressions represent respectively, the

time derivatives of the projections of the angular momentum vector G on

the _*-, _i*-, and _*-axes while the right-hand sides represent the sums of

all external moments acting on the mechanical system considered about

these same axes. The moments due to forces of inertia arising out of the

translational motion are included in these sums.

Equations (1) are inconvenient because of the unwieldy expressions ob-

tained. The calculations can be considerably simplified by projecting the

angular momentum derivative on the axes of a moving reference frame,

whose motion is in a certain way related to that of the mechanical system
considered.

Let zItz be such a reference frame; it will be called the auxiliary frame.

Let g be the angular velocity of this frame relative to the basic frame _*_*_*,

and let the origins of both coincide. The projections of the time rate of

change of the angular momentum vector on the z-, y-, and z-axes are

y

where G.. G_. G. are the projections of the angular momentum vector on

these axes, and w., "mu, _,, the compoaents of the angular velocity of the

reference frame zy$ relative to the basic frame |*_*_* or, which is the

same, relative to the absolute reference frame _*_o*_.

In accordance with the angular momentum theorem, the components (2)

are equal to the sums of the moments due to all external forces acting on
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the mechanical system considered and to the translational motion of the

basic reference frame _*_]*_*. (The frame xlIz was only introduced because

it is simpler to calculate the angular momentum derivative relative to it

than relative to the basic frame _*_]*_*.) The following equations are obtained

by denoting these sums of moments by Ms, M#, Ms:

d@) .
de. -k,,,,o,-- ,,,,o#= x,, -_-+,,,,o,--,o,o,--H,,

(3)
do___.+ ,,.c)- .,o.--- H...d#

These relationships are equivalent to (1).
4. The external forces acting on mechanical systems include the unknown

constraining forces between them and the base (usually moving) on which they

are mounted. Gyroscopic systems are usually mounted on the base by means

of gimbals. When the mechanical system consists of several elements of the

gyroscopic device, for instance of the entire system less the outer ring, or

of a single gyro with its housing and rotor, the constraining element is usu-

ally a simple hinge. In many cases it can be assumed approximately that

friction in the hinge is independent of the constraining force of the bearing

on the pivot. If the pivot axis coincides with one of the axes of the refer-

ence frame zyz, the equation of system (3) will contain no unknown constrain-

ing forces.
In the more general case when the pivot axis does not coincide with the

z-, [I-, or z-axes, the equation of motion of the gyroscopic system, which

contains no constraining forces, is

,'o.+ + ..0.-,,,.0.]oo,p +
__r _6, w+G_ -- w_G,] cos _ --_ M,. (4)L-_-t

cosa_, cosyv, cos_ are the direction cosines of the pivot axis v relative

to the frame zyz, and M, is the sum of the moments about the pivot axis due

to the external forces acting on the mechanical system. M+ includes also the

moment due to friction in the hinge, the torque transmitted to the pivot by means

of, e.g., an electric motor, and the moments about the v-axis, due to inertia

forces caused by the translational motion of the basic reference frame |*_*_*

M , .-.._M . cos _ Jr M _ cos liv -]- M , cos zv. (5)

If the friction in the hinge depends on the constraining forces, an equa-

tion of motion not containing these unknowns is far more difficult to obtain.

All three relat.ionships (3) have to be used in this case. It would then also

be very difficult to establish the equations of motion of a gyroscopic system

by the method of Lagrange multipliers.
5. Consider as an illustration the determination of the equations of mo-

tion of a three-dimensional triaxial gyroscopic power stabilizer* (Figure 1).

The pivot _- (_¢-) axis of the gimbal frame If of platform P is mounted in

bearings on the moving base carrying the stabilizer. The platform P can

tilt about the axis y_(y) lying in the plane of frame R and forming a right

angle with the axis _(zs). Two gyros, I and II, are mounted on the platform;

their housings can tilt about the z z- and ze-axes which are perpendicular to

the plane of the platform.

) Sucha systemwas developedin195"/fortheAcademy ofSciencesoftheUkrainianSSR forthestabilization

ofelectricmeasuringframeson a movingbase(hellcopZer).
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The body B which has to be stabilized can also tilt together with gyro III

about the z- (g-) axis which is also perpendicular to the plane of platform P.

The I/s- (g -) axis {the housing pivot axis of gyro III) is parallel to the plane

i!

of platform P.

/A

,P

i

FIGURE 1

Introduce the right-handed coordinate systems E_I_, :dl/_, zyz, and zgt,

fixed respectively to the moving base, the frame /f, the platform P, and

the body to be stabilized B. The reference frame xVz will be considered

as basic frame in all subsequent calculations. The E-axis of the coordinate

system E_ coincides with the longitudinal axis of the moving object (the

moving base), and the _l-axis with its transversal axis. The :¢- and yS-axes

of the coordinate system _[/_ lie in the plane of frame /f; the xt-axis coin-

cides with the _-axis and is the axis about which the frame /¢ tilts (Figure 2).

Let _ be the tilting angle of the frame relative to the object. The coordinate

systems x'y_ and _1_ coincide when a = 0. When a_0 the frame tilts

counterclockwise if viewed from the positive _- (or the :d-) axis.

The coordinate system xyz is fixed to the platform P (Figure 3). Its y-

axis coincides with the //-axis and forms the tilting axis of platform P.

Let _ be the tilting angle. The x-axis of the coordinate system zVz lies in

the plane of the platform, the z-axis being perpendicular to it. The planes

of platform P and frame /¢, and therefore the corresponding axes of the sys-

tems xyz and x°y_z ', coincide when _-_0. When _0, the platform P tilts

counterclockwise when viewed from the positive y- (or _°) axis.

Lastly, the coordinate system _g_ is fixed to the body B which has to be

stabilized. The _-axis coincides with the zoaxis of the coordinate system

x//z fixed to platform P. Let _ be the angle of rotation of the system 2yg re-

lative to the system zUz (Figure 4). The x- and :t-, //- and _-axes coincide
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respectively when)--_0. When _0, bodyB is rotated counterclockwise

relative to its initial position when viewed from the positive z- (Z-) axis.

C

EM1 _.

FIGURE 2 FIGURE 3

Z,I

/

>

Let T, and I',, be the tilting angles of the housings of gyros I and II relative

to platform P (Figure 5). When Tx--_0, the axis of rotation of gyro I is paral-

lel to the v-axis; the axis of rotation of gyro II is similarly parallel to the

FIGURE 4 FIGURE 5

X

x-axis when Tz_0. The signs of "h and "fs are determined in a similar way

to the sign of _.

Lastly let _ be the angle between the axis of rotation of gyro III and the

plane of the platform (Figure 6). Choose the positive direction of _ in such

a way that the projection of the angular momentum vector of gyro III on the

Z- (_-) axis is positive when 0<_'12_.
6. To ensure continuous stabilization of body B, the device described

must include, in addition to the gyros, also elements applying to frame /i',

platform P, and body B torques of magnitudes and directions determined by

Tl, T_, and _. These elements may be the electric motors EM 1, EM z, and

EMa (Figures 2, 3, and 6). The frame of motor EM 1 is secured to the mov-

ing base; it develops a torque Ms., applied to the gimbal frame B" about the

f- (x'-) axis. The motor is controlled by means of an amplifier, whose in-

put voltage is supplied by the pick-up D 1 mounted on the housing pivot of

gyro I. The torque applied to gyro I by the motor EM t causes a precession

of the gyro which tends to reduce the angle h. If the torque is sufficiently
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large, T] will never attain the value 1]sw at which the stabilization is disturbed.

This could happen due to a rotation about the z-axis of the device together

with the moving base, or by some other cause (gravity, friction, inertial

loads, etc).

The motor EM 2, which applies to platform P, a torque M v about the

_7- (y-) axis, is mounted on frame _. It is controlled through the pick-up

D,, which records the angle Tz.

Lastly, the motor EM3, mounted on the platform P, tends to rotate the

body B about the z- (_-) axis by developing a torque whose magnitude and

direction are determined by _ (Figure 6).

L

I!IUlIll

FIGURE 6

The body B can vary its orientation only as a result of the action of mo-

ments applied about the pivot axes of the housings of gyros I, If, and Ill.

These may be due to friction which causes the specified orientation of body

B to be altered. In order to restore this orientation, torques are caused

to act about the pivot axes of the housings of the gyros by means of solenoids,

and in many cases by utilizing the force of gravity*.

7. Six mechanical systems will be examined successively in order to

establish the equations describing the behavior of this complex gyroscopic

device: 1) the device as a whole, comprising the frame /i', the platform P,

the body B, and all three gyros with all the additional elements linked to them

kinematically; 2) the device without the frame /_; 3) the body B with gyro III;

4) the gyro I; 5) the gyro II; 6) the gyro III.

Each of these systems is linked to the others or to the moving base by a

plane hinge. The torque about the hinge pivots due to external forces acting

on the relevant system is assumed to be known.

* Torques created by small additional weights are capable of bringing the platform into the horizontal

position, and of creating a precession of gyro III so that body B will not rotate relative to the Earth. For

this latter purpose, a suitable weight, creating a torque about the ?/a-axis, has to be mounted on the

housing of gyro III. In order to bring the platform P into the horizontal position, it is sufficient to fix

additional weights to one side of the housings of gyros I and II. When the platform is inclined, these

weights create torques about the pivot axes of the housings, causing the precession of gyros I and 1I.

When the weights are fixed to the correct sides of the housings, the platform returns to the horizontal

position. Such a correction system is called mechanical. It is simpler than the so-called electric

correction, in which the required torques are caused by solenoids. The magnitudes and directions of

the torques are in this case determined by the deviations of pendulums mounted on platform P.
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The angle of rotation of the pivot relative to the bearing is one of the

generalized coordinates of the device; this is in fact the reason for select-

ing the above-mentioned mechanical systems.

A reference frame having its origin at the geometric center of the gim-

bals, i.e., at the common origin of the coordinate systems Ev_,x'_z', xyz,

and xgJ (fixed respectively to the moving base, the frame K, the platform P,

and the body B), is taken as the basic frame }*_]*_* for the first three me-

chanical systems. The origins of the basic reference frames for the last

three mechanical systems (the individual gyros) coincide in each case with

the intersection of the housing-pivot and rotor axes of the corresponding

gyro.
The same reference frame xyz, fixed to the platform P, is used in all

cases as auxiliary frame. The angular velocity of this frame (or, which

is the same, of the platform P) relative to the basic reference frame _*vA*_*

will be denoted by _, and its projections on the z-, y-, and z-axes by _%, w_,

w,. The projections am and w_ are determined by the precession of gyros I

and If, and must therefore be small; since w, is determined by the motion of

the base carrying the stabilizer, its magnitude can be arbitrary.
8. Let M' be the resultant moment of the external forces acting on the

first mechanical system _:'.

The angular momentum G t of the first mechanical system is (within the

limits of the elementary theory) equal to the sum of the angular momentums

of gyros I. If, and Ill. Its projections on the axes of the auxiliary reference

frame A_/zwill respectively be

= H (--sinr,+ cos_,+ cosScos_),

G_= H (co,T,+ sin7,+ _os_sin,). (6)

G' --_ H sin _,

as is easily seen from Figures 5 and 7. The angular momentum of each

gyro is assumed to be H= const.

The following relationships, similar to (3), are obtained by applying the

angular momentum theorem to the first mecfianical system:

da'.

dG_ . ,.,, _ r_" __ M'-}-...u -- ....--,, (7)

aa'.

It is seen from Figure 3 that (exactly as for (5)) the expression

.M_ cos [3-_- M_ sin [i = M_ (8)

represents the sum of the moments about the x'- (_-) axis due to the forces

acting on the first mechanical system, i.e., the complete stabilizer. This

sum does not contain the moments due to the bearings constraints.

* Within the limits of the elementary theory of gyroscope precession the resultant vector of all these

forces is equal to zero; they are therefore equivalent to a couple of moment M*.
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We obtain

dG: ] 'riG: , ]sin _ _---M:,,+ .G,-- .G',Jco, G,--. G; (,)

by subsituting in (8) for M: and M_ their expressions from (7). This re-

presents therefore the equation of motion of the gyrostabilizer. It does
not contain the moments due to the unknown constraints in the pivot bear-

ings of frame /_*.

Inserting (6) into (9) yields

H{ cos _ "-_d/__si n T, _- c°s T,)-- COS_ e°s ' sin _ (w. J_ _-_t)--

d_ jff _, [cos _ sin 8 ---- (cos _ sin _ cos _ -- sin _ cos _) -Ji

-- sin _ (--sin Tl -_- cos Tz]- cos _ cos ¢?)] -4-

nL (t% sin _ -- % cos _) (cos 1"2_ sin Ts) -_-

-q- _ sin _ cos 8 sin _ } _-_ M_,. (10 )

The torque M_, includes, in addition to the moments due to friction and
to the torque developed by the electric motor EM 1, also the moments due

to gravity acting on the moving parts and to the inertia forces caused by

the translational motion of the basic frame E*II*_* (whose origin is at the

geometric center of the gimbals).

FIGURE 7

9. Equation (10) is one of the six differential equations which describe

the motion of the gyroscopic stabilizer. In order to obtain the second of

these equations, consider a mechanical system which includes all com-

ponents of the stabilizer except the frame /f. Since the angular momentum

of frame H is neglected in the elementary theory of gyroscopes, the total

angular momentum G of this system is equal to the total angular momentum

G t of the system which includes the frame:

G.=G' z, G =G'y, G-_G'_, (11)

where G c. Cry, and G, are the projections of the angular momentum of the

new mechanical system on the axes x, y, and z, and G_, G_ and G_ are
given by (6).

In this system the constraints acting between platform P and frame /1" are

external and must be taken into account in the equations derived from tile

* It is assumed fllat friction in all gimbal bearings is independent of the constraining forces.
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angularmomentumtheorem. Theseequationsaresimilar to (3). Theonly
equation(3)whichcontainsnoconstrainingforces is thesecond,sincethe
y- (y'-) axis is thepivotaxisof platformP whose bearings are rigidly fixed
to frame /t'.

The following equation is obtained from (6), (7), and (I1)"

4 _ d_

_- cos _) -- _, sin _] _ Mj,. (12 )+ (-sinoJ z "[1

The torque My includes the moment due to friction of the platform pivot
in its bearings, the torque of motor EM 2, and the moments due to gravity

and the inertia forces caused by the translational motion of all elements of
the stabilizer except the frame K.

10. Consider now the third mechanical system--the body B with gyro
III (Figure 4). Its angular momentum is the angular momentum _ of gyro

III. It follows (Figure 7) that the projections of the vector _ on the axes of

the auxiliary reference frame xyz are equal to

_,_H cos _ cos _, _y-p-Hcos _sin _, _,=Hsinl. (13)

In this case the third equation (3) has to be used , since the other two

contain the unknown constraints in the bearings of the body B. These are
external forces wilh res pert to this particular mechanical system. The follow-

ing equation is therefore obtained with the aid of (13):

cos _ cos _): _,. (14)H(cos 8 --_ nu ¢% cos _ sin _ -- o_

Here _z is the moment about the z- (g-) axis due to all external forces

acting on the third mechanical system consisting of the body B, and the

housing and rotor of gyro III. This includes friction, the torque applied

by motor EM3, and also the moments due to inertia and gravity. The inertia
forces are those due to the translational motion of the basic reference frame

_*,l*_* whose origin is at the geometric center of the stabilizer suspension.

11. When the last three mechanical systems --the gyros I, II, and III--

are being considered, the corresponding basic reference frames }**_l*C**,

}z*_z*Cz* and }s*,]3*C_* have to be chosen so that their origins will lie at the

intersections of the housing-pivot axis with the rotor spindles of the cor-

responding gyros. They will have different accelerations relative to the

absolute reference frame }a*_*C,*. This difference is due to the angular

velocity o_ of the platform P and, in the case of the basic frame }s*_h*_*,

also to the relative angular velocity --_ of body B relative to platform P.

Due to the small dimensions of the gyroscopic stabilizer and to the low

d¢
values of _ox, ¢o_, _0_ and -_- this difference between the accelerations of

the frames }**'h*Cl*, }2"_]_*_ *, }_*_3"_* and the acceleration of the basic

frame _*_]*_* is small and usually can be neglected.

The following equation, similar to the third relationship (3), is obtained

by applying the angular momentum theorem to the mechanical system con-

sisting of the rotor and housing of gyro I:

d I • I 1

d-?G, -_-_,G_, -- to_G, = M,,. (I5)
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This equation does not contain the unknown constraining forces at the hou, s-

ing bearings. Here (Figure 5),

f
G____.--HsinT1 , G____Hcos-h, G_--_0 (16)

are the projections of the angular momentum G l of this system (equal to

the angular momentum of gyro I) on the axes of the auxiliary reference

frame xyz.

The magnitude M_, represents the sum of the moments about the zl-axis
due to the forces acting on the housing and rotor of this gyro. These forces

are due to friction in the bearings of the housing suspension, gravity, the

translational motion, the elasticity of the electric wires, and the reactions

of the pick-ups.

Inserting (16) into (15) yields

• I
H (to. COS TI "q- t°y sin "/'1) = M.,. (17 )

This is the fourth equation of motion of the gyroscopic stabilizer.

Similar calculations for gyro II yield the fifth equation:

H (t% sin "h -- to_ cos Tt) = M/_" ( 18 )

The moment M,1_ is analogous to the moment M_,; it represents the sum

of the moments about the zfaxis due to the forces acting on the housing and

rctor of g-yro II.

Equations (17) and (18) do not contain the unknown constraining forces

at the bearings of the gyro housings.

12. Consider finally the sixth mechanical system, consisting of the

housing and rotor of gyro III (Figure 6). Inserting into (3) the projections

GUZ -- _ G_II Hcos_sin_, c l,s Hsin 8. _cos cos_, v, -- (19)

of the angular momentum of gyro III yields

(no.oos,,,,)+o. =M:",
" [_ (COS _ S'" *) "_L to" cos ' cOS _b-- m" st" _] =M_u' (20)

d
sin + (to. ,)Cos = M:".

MrlI _LIXll MIll
. , ..,_ , ,,._ are the sums of the moments about axes respectively

parallel to the x- y-, and z-axes, but passing through the geometric center

of the gimbals of gyro III, due to forces acting on the housing and rotor of

gyro III.

These forces include also the constraining forces at the bearings of the

gyro housing, located in body B. To eliminate these unknown forces, form

the expression

MIH __ ..xll MIx," (21 )--..., sin_-t-/ny cos_ .... _h ,

being the sum of the moments about the ya-axis due to the forces acting on

gyro III. It contains no constraining forces. Substitution of the values of
Hill . Mill

z anO _,,y from (20) yields
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, Note that different auxiliary reference frames may be used to derive

(17), (18), and (22); thus, (22) can be obtained by using the frame 2_Z fixed.

to body B (Figure 4).

Equation (22) completes the set of six equations describing the behavior

of the gyrostabilizer and its components both relative to each other and
relative to the Newtonian frame.

13. Let (10), (12), (14), (17), (18), and (22)form a set. The following

equations describing the motion of a triaxial power gyrostabilizer are
obtained:

,,{oo,
-- (cos _ sin _ cos _ -- sin _ cos _) _ _ sin _ [e. cos a sin ? --

-- _r (--sin-l,+ cos T,+ cos acos _')1-1-

-_- (®. sin p _ ¢0_cos p) (cos TI"J- sin Ts) } _-- M'..;

8 Z am

-I- ®.(--sin X,_ co, I',)-- ,,. sin_] -- X,.;

/?(cos -_-_.. cosasln_,--® W

R (.. cos.T_+ "s,sin ¥,) _ M.t,;

n (-. si,, T,-- "j, _ "r,)= X ._,';

,,[(.. ,--(-.cos+-,,,. ,]=,,'.

(23)

14. Several important conclusions can be drawn from these equations.

Let

Mr __ uzl __ uHx _ n (24)

This means that no torques are applied to the pivot axes of the gyro hous-

ing. This can in practice be approximated by reducing friction in bearings

and strain in the electric wires to a minimum and by mounting the stabilizer

so that by careful balancing the center of gravity of each mechanical system
housing rotor is made to lie on the housing pivot axis.

The fourth and fifth equations (23)then yield:

w. cos ?_-I- %sln T_-- O, .,. si,,'T,-- ..e cos T,----O. (25)

It follows that
%--_%--0 (26)

unless t
TI-- TI+ T"' (2'/)

which means that the axes of rotation of gyros I and II are parallel. Thus

if _h and 7s are maintained smaller than 45 ° by the action of the electric
motors EM 1 and EMs, the platform P will be partially stabilized when the

first two of conditions (24) are satisfied. The perpendicular to the plat-

form (the z-axis) does not alter its orientation relative to the Newtonian frame.
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Inserting (24) and (26) into the sixth of equations (23) yields

m .lt_ T_t ___0 i (28)

provided, of course, that
! (29)

The left-hand side of (28) represents the projection on the _- (_-) axis of

the angular velocity of body B relative to the basic reference frame }*_*_*.

The projections of this angular velocity on the z- and y-axes coincide with

the corresponding projections of the angular velocity of platform P and are

equal to zero because of (26). Therefore, when no torques are applied to

the pivot axes of the housings of the three gyros, i.e., when condition (24)

is satisfied, the body B is stabilized relative to the Newtonian reference

frame.

Inserting (26) and (28) into the first three of equations (23) yields,

4
--H cos [3E'_T (sin It -- cos T2) "_- (sin_cos _--cos_tg[3)_/- -]-

+ =, (cos_t + sm y,)'] =_,,
& dt

H _ (cos It+sin TO--sin _ sin _ _i-_-% (--sin lt-_--cos "h)_-My,

4_
H cos _--i/-= ,_+.

(30)

15. Assume that no torques are applied to frame If, platform P, and

body B, and that there is no friction in their bearings:

M_,= My: _,___0. (31)

If condition (24) is also satisfied, and if the angular velocity of the base is

such that _s_0, (32)

then equations (30) will be satisfied when "rl,It, and _ are constant.

Let the electric motors EM t, EM 2, and EM 3 be controlled in such a

manner that the torques applied by them to the pivot axes of frame _, platform

P, and body B are proportional to the tilting angles of the housings of the-

corresponding gyros, and assume that there is no friction in the gimbal

bearings. In this case

M_'=/q'l, Mv_---kT=, M,-_---R_, (33)

where k is a proportionality factor.

Equations (30), together with condition (32), have in this case a solution:

"h--_0, Is:0, _0. (34)

It is easily seen that the equilibrium'position of the gyrostabilizer, de-

fined by (34), is stable (within the limits of the elementary theory). In fact,

if'it,Is,and _ are small, their trigonometric functions in (30) can be replaced

by the zero- and first-order terms of their series expansions. Taking into

account (32) and (33), equations (30) become

--Hcos 13 dl_ _ 1.-, aa-_ --''n- Hsin [3-J7' H'_--m'--kl=" (35)
dt

//-_- =--/_.
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It followsthat-/,, lfs, and _ willtend to zero irrespective of the law of vari-

ation of _ determined by the motion of the base; of course _<_ 90 °*.

In the general case the right-hand sides of (30), i.e., the torques

M_,, M, and _., include in addition to the torques of the electric motors,
also the moments due to friction in the suspension bearings of the frame /f,

platform P, and body B, determined by the relative angular velocities d.]dt,

d_]dt, and d_]dt. In addition, when the mechanical system and its separate

parts are insufficiently balanced, M_, M r, and _, include also the moments
due to gravity and the inertia forces caused by the translational motion.

Assume that %-/=0. Then, assuming that l[a, 7e, and _ aresmall, equations

(30) can be written

ts + o.(,+ T0]=-,;+,, (T,).

H _r=,q" + _0),

where M:;, M;, and _; are the sums of the moments due to friction, inertia,

gravity, etc, acting respectively on the following mechanical systems:

1) frame/_-- platform P -- body B and gyros I, II, III; 2) platform P-- body B

and gyros I, II, III; 3) body B and gyro III.

M('h), M(_2), and _(_) are the torques applied to these mechanical systems

by the motors EM,, EM2, and EM3 respectively.

The torque produced by each electric motor cannot exceed a certain limit

imposed by motor and motor transmission. Figure 8 shows a fairly common

type of functional relationship between the motor torque M for the case of a

short-circuited squirrel-cage motor (rotor at rest} and the angle -f for the

corresponding gyro. The so-called stepped relationship, is shown in

Figure 9.

FIGURE 8 FIGURE 9

Satisfactory performance of the stabilizer requires that for any motion

of the object, the maximum t-rque M,_ exceed the corresponding de-
. . . #* • I . .

stabilizing moment M.,, M,, or _,. SunHarly, the maximum torque of

motors EM 1 and EM 2 should exceed by a margin the product

(%),_ H, (37)

* It is possible that when the motors are switched in the transient processes mentioned in § 1 are not damped,

leading to oscillations of the gyroscopic platform (primarily about the "-axis). To study these oscillations

and the means for damping them, it is necessary to take into account the moments of inertia of the gyro-

scopic-device elements and transient processes in the electric circuits of the motors and the feedback

circuits of the amplifiers. The influence of the motion of the base itself on the oscillations is usually

negligible because of their high frequency. The analysis of these oscillations of the gyrostabilizer forms

the subject of a separate study.
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where(_z)_is themaximumvalueof theangularvelocityof theplatform
aboutthe s-axis, causedbytheobject'srotation. In thecontrarycase,
thehousingsof gyrosI andII will lagbehindtheplatformduringits rota-
tion, andl', and_smayincreaseinfinitely,

TheconditionsunderwhichthebodyB is stabilized relative to a New-

tonian frame are given above. They require that the sum of the moments

about the pivot axes of the corresponding housings due to the forces acting

on each of the three mechanical-system housing rotors be separately equal

to zero. This can be achieved only if friction in the bearings of the housing

pivots is completely eliminated, if the center of gravity of the system hous-

ing rotor is accurately located on the housing pivot axis, etc.

In many cases it is required that the body B be stabilized relative to a

reference frame linked to the local vertical and the compass points; such

a frame is usually called a geographic reference frame, and its axes are

directed to the east, the north, and the zenith respectively. When the base

is stationary, the angular velocity of body B must be equal to the angular

velocity of the Earth. If the base moves, the angular velocity of body B must

be equal to the sum of the angular velocity of the Earth and the angular

velocity relative to the Earth of the geographic reference frame.
n " a o I Is m . .I th_s c se, t rques M,,, M,., and M_, causing precession of the gyros,

and, as a result, the required angular velocity of body B, have in accordance

with the last three of equations (23) to be applied to the pivot axes of the

housings of gyros I, II, and III. It is very difficult to realize this technically.
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Appendix 2

THEORY OF THE GYROHORIZONCOMPASS*

I. This appendix gives a rigorous treatment of the precessional theory

of a gyrohorizoncompass having as sensitive element a device similar to

the so-called gyrosphere of the "New Anschfitz" gyrocompasses**.

This sensitive element can be considered as a set of two gyros whose

housings have parallel pivot axes with bearings rigidly mounted on the

same frame; this frame will be called the gyro frame (Figure l). In the

J

Y

l

FIGURE 1

double-gyrocompass this frame is enclosed in a spherical shell and immersed

in a liquid. An almost frictionless suspension is thus obtained (Figure 2).

V

FIGURE 2

* PMM, Vol. 20, No. 4. 1956.

** Bulgakov, B.V. Prikladnaya teoriya giroskopov (Applied Theory of Gyroscopes). -- Moskva, Oostekhizdat.

1955. [English translation, IPST. 1960.]; Grammel, R, Det Kreisel. F. Vieweg, Braunschweig, 1920.
[Translated into Russian. 1952.]
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It will be assumed that the center of the frame suspension moves along

a sphere S of radius R which encloses the Earth, and that the force of

gravity acting on the frame is a single force F applied at the center of

gravity of the frame and gyros, in a direction normal to the sphere.

It will also be assumed that the sphere S does not participate in the

Earth's rotation and does not alter its orientation relative to a Newtonian

reference frame. The translational motion of the sphere due to the Earth's

rotation about the Sun can be neglected since the gravitational gradient is

very small. The center of sphere S can therefore be considered as sta-

tionary.

It is convenient to study the gyro-frame motion relative to the sphere S*.

Friction in the suspension of the frame and in the bearings of the gyro-

housing pivot axes, and the unavoidable assembly inaccuracies (e.g., axial

and radial clearance in the bearings, residual unbalance about the suspen-

sion axes), will be neglected.

It will be assumed that the housings of the two gyros are tilted through

equal and opposite angles relative to the frame (or, which is the same,

relative to the sensitive element of the double-gyrocompass) by gears or

link mechanisms (Figures I and 2).

2. In accordance with the elementary theory of gyroscope precession,

it will be assumed that the total angular momentum//of the gyro frame as

a whole is equal to the geometric sum of the angular momentums B' and B"

(of equal magnitude) of the two gyros. Let 2s be the angle between the axes

of the gyro rotors (Figure I). Thus

H =2B cos, (B---_B'--B_). (1)

The vector of the total angular momentum H, is directed along the bi-

sector of the angle 2,; because of the above-mentioned gear [or linkage],

the vector H has a constant position relative to the frame.

Let a coordinate system xyz be fixed to the gyro frame with origin at

the center of suspension, y-axis parallel to the vector H, and z-axis paral-

lel to the pivot axes of the gyro housings. This defines uni'quely the position

of the z-axis (Figure 3).

z* z'

• H Z"

FIGURE 3

Let ¢%, _w, and % be the projections on the axes of this system of the

frame's angular velocity relative to the sphere S (or, which is the same,

Ishlinskii.A.Yu. Ob otnositel'nomravnovesiifizicheskogomayamika s podvizhnoitochkoiopory

(The RelativeEquilibriumof a PhysicalPendulum with a Moving PointofSupport).- PMM, Vol.20.

No. 3. 1956.
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relative to a Newtonian reference frame). The expressions

dH,,
dt _" m_Hz - mzH_'

auw Jr-w,H. -- w.lt,,
dt (2)

_u._.__.,+ "*_w-- ®ys.
dt

represent the projections of the time rate of change of the angular momentum

H on the x-, y-, and z-axes.

According to the angular momentum theorem, these projections are re-

spectively equal to the sums of the moments acting on the frame about these

axes. These moments will be denoted by M_ M v, and M,.

The frame's angular momentum vector is directed along the y-axis.

Therefore,

H,=O, Hy-----H_-2Bcos,, H,--O.

The following three equations result from this:

&S %H'-- M,. (3)--w,H=M,. "_-=M v,

The gyro frame thus represents a mechanical system having four de-

grees of freedom, and therefore a fourth equation, containing the projec-

tion of the angular velocity _, has to be added to (3) in order to define the

motion completely. The z-components of the time rate of change of the

gyros' angular momentums are

o,.e' -.,j'. = M:, = M;. (4)
Here M: and M_ are the sums of the moments acting on the housings of

each gyro about the pivot axes of these housings, and /_, B_, _, B" are the
projections on the z- and y-axes of the angular momentums B' and _ of the

gyros. Obviously (Figure 3):

B' =--_=B sin., 8',=B;=BGos.. (5)

In accordance with the elementary theory of gyroscope precession only

the angular momentums of the gyro rotors enter into the equations of mo-

tion. The remaining angular momentums and their time variations are

neglected. It is therefore assumed that the forces acting directly on the

frame are in equilibrium. In particular

M,--M',--M:-._O. (6)

Here --M: and --M: are the moments of the couples counteracting the
n

moments M: and M: applied by the frame.

When (4) is inserted into (6) and (1) and (5) are taken into account, the

third of equations (3) is obtained.

Let N be the difference between the moments M_ and M;. It then follows

from (4) and (5) that

N -= M : -- M:-._ --w_2B sin *. (7)

A moment N can be created by means of a spring device.
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Byvirtue of (3), (7), and(1), themotionof thegyroframeis determined
by the followingfour equations:

--,,,fiBcos ¢ = Ms; w.2B cos *_ M,;
(8)

---_ (2B cos*) _ My; ---_2B sin, _ N.
dt

3. The parameters characterizing the gyro frame, and in particular

the relationship between N and e, can be chosen so that for certain initial

conditions the z-axis will remain always normal to the sphere S, irrespec-

tive of the motion of the frame suspension point on it.

To prove this, it suffices to find the conditions under which equations (8)

become identities.

Introduce a moving reference frame }*_l*_* having its origin at the point

of gyro-frame suspension and whose axes are oriented by a Newtonian re-

ference frame. The equations of motion of the gyro frame relative to this

coordinate system are given by (8).

The forces acting on the gyro frame also include, in addition to gravity

and the suspension constraints, the inertia forces due to the translational

motion together with frame _'71"_*. These inertia forces form a single force

Q acting at the center of gravity of the gyro frame. The projections of this

force on the x-, y-, and z-axes are

Here m is the mass of the frame together with the housings and rotors

of the gyros, and w,, wy, w, are the projections on the x-, y-, z-axes of the
acceleration of the frame suspension point.

Therefore ":

w,,= --_ -1-%v. -- o,.v,_, w,t=-gi- 4- %v,,-- ._., (to)
(lot

where v., v r v. are the projections of the velocity of the frame suspension

point, and w., w!, wt the projections of the angular velocity of the gyro frame
(and therefore of the coordinate system xyz) relative to the sphere 8.

The z axis must be normal to the sphere S, and therefore:':*

vz_wyR , V,_--_zR, vt_O. (Ii)

Using (9), (10), and (11), the projections of the force Q on the axes of

the system xt]z can now be written in the form

(I'>
_.. 2 $= --mR (--¢. -- wv).

Let the frame's center of gravity be located on the negative z-axis at a
distance I from the suspension point. In this case the force of gravity is

• S_lov. K.G. Teoreticheskaya mekhanika (Theoretical Mechanics). -- Gostekhizdat. 1944. [cf: Goldstein

Classical Mechanics. p. 135.--Addison-Wesley Press. 1951.]

• * Ishlinskii, A. Yu. Ob omositel'nom ravnovesii fizicheskogo mayamika s podvizhnoi tochkoi opory

(The Relative Equilibrium of a Physical Pendulum with a Moving Point of Suppor0.- PMM, Vol. 20,

No. 3. 1956.
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d{rected along the s-axis, and its moment about the suspension point is

therefore zero. The same is true of the component Qt of the inertia force

due to translational motion and of the reaction of the link. In order to de-

termine the moments M,, M_, and M,, it suffices therefore to find the mo-

ments about the z-, y-, and z-axes due to the forces Q= and Q_. The follow-

ing expressions are then obtained:

M,=IQ_. My-_---IQ=, M,=O. (13)

Inserting these expressions into (8), and using (12) in the resulting equa-

tions, yields

--%2Bcos.-_-mlR(_--%%). ,_j2Bcos,_-O.

It remains to determine the conditions under which these equations become

identities.

It follows from the third of equations (14) (except for the exceptional

!
case l_-_-_) that:

w._-0. (15)

It is now easily seen that the first two of equations (14) are satisfied if

2B cos ._ H _mlIl® r (16)

Eliminating _u from the fourth of equations (14) by means of (16) yields

4Bs
N =- ---m-_ cos I sin,. (17)

It follows from (15) and the second of equations (11) that

%=0. (18)

The x-axis must therefore be initially tangent to the trajectory of the suspen-

sion point in its motion on the sphere S (Figure 4), but it will remain so

FIGURE 4 FIGURE 5

throughout the motion only if the other initial conditions, given below, are
likewise satisfied.

Since by (ii) and (15) uv_o=_O, o_v=_w_R, where p is the velocity of

the frame suspension point relative to the sphere 8. Equation (16) there-

fore becomes

2B cos. _mlv. (19)

If the initial velocity is uo, the initial angle s o will be given by

mlo o
C0$ •O_ --;_-.

(20)
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Equation(19)will thenbesatisfiedthroughoutthemotionof thesuspen-
sionpoint, ascanbeseenby inserting(15)into thesecondof equations(14).

Lastly, the z-axis must initially be normal to the sphere S.

When these conditions are satisfied, the moment N given by (17) will be

such that the component _ of the angular velocity of the frame, determined

by it, will satisfy the first of equations (11), as can be seen by inserting
(16) and (17) into the fourth of equations (14).

If conditions (18) and (20) are nearly satisfied initially and the z-axis

deviates by a small angle from the normal to the sphere S, the motion of

the frame can be analyzed by studying the small perturbations of the motion

which would strictly satisfy the initial conditions. This problem will be dis-

cussed under 6.

4. The gyro-frame motion relative to the Earth will now be examined

under the assumption that the Earth is a sphere of radius R and that all the

conditions under 3 are rigorously satisfied.

Introduce a moving reference frame _]_ (a geographical trihedron), with

the }-axis directed to the east and tangent to the parallel, ,1-axis to the

north and tangent to the meridian, and C-axis directed upward along the

Earth's radius; let the origin be located at the frame suspension point.

Let U be the angular velocity of the Earth, ?, the local latitude (strictly

speaking the geocentric latitude), and V_ and V#, the eastern and northern

components of the velocity relative to the Earth of the origin of the system

}_]_. The projections on the _- and _-axes of the velocity of the origin re-

lative to the sphere S are

v_V_-_-UReos?, v_V m. (21)

Replacing the subscripts z and y in (II) by _ and _]respectively, and

using (21), we have
Vx Vm

ut_ B ' u _-_---_-U eos? (22)

where u L and u_ are the projections of the angular velocity of the trihedron
}_ relative to the Newtonian reference frame }'71"_*. The projection of this

angular velocity on the S-axis is

V$
uc _______ tg __{_ U sin ?. (23)

Let 0 be the angle between the y- and _-axes, measured as shown in

Figure 5. It is easily seen that the projections on the x-, y-, and z-axes
of the angular velocity of the reference frame xyg fixed to thegyro frame are

== _ ut cos 0 -- u_ sin O, =_ _---u t sin I) 4- u_ cos O,

dl (24)
m=_ U¢ dt "

In accordance with (15) the x component of this angular velocity is equal

to zero. Inserting (22) into the first of equations (24) yields

Vx
tgO------ RUcos_.i_V t. (25)

The y-axis, which is linked to the gyro frame, thus deviates from the

northern direction by an angle 0 determined by (25). This is the so-called

velocity deviation of the gyrocompass.

* Bulgakov, B.V. Prikladnayateoriyagiroskopov(Applied Theory of Gyroscopes).-- Moskva, Gostekhizdat. 1955.
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"Consider now relationship (19) between the angular momentum of the

gyro frame and the velocity of its suspension point on the sphere S. Insert-

ing (21 ) into it yields ':',

H = 2B cos ,=ml Vr(RU cos _ _- F_-_ V_,. (26)

The above discussion shows that if (26) is satisfied the gyrocompass

deviation will be strictly according to (25), provided only the relationship

between N and e, given by (17), and the initial conditions under 3 are ob-

served. Note that the --axis, linked to the gyro frame, is in this case

directed toward the center of the Earth, and therefore forms with the verti-

cal a small angle depending on the local latitude.

5. Form a Darboux trihedron x°_ with apex at the gyro-frame suspen-

sion point, and with the x°-axis (edge) lying in the direction of the velocity

relative to the sphere S of the frame suspension point, and the _-axis nor-

mal to the sphere; the direction of the y°-axis is then uniquely determined.

If the initial conditions of motion stated under 3 are observed, the x-, y-,

and z-axes linked to the gyro frame will always coincide with the x°-, If-,

and _-axes for any displacement of the trihedron on the sphere S.

Consider now the initial conditions in the general case and form the

equations of the gyro-frame motion relative to the trihedron _$0.

The position of the coordinate system xyz relative to the trihedron x°_

is defined by the three angles _, _, "f(see Figures 6 and 7). The angle

defines the rotation about the z'-axis, which coincides with the Z°-axis, of

the auxiliary coordinate system x'y'f relative to the system a_; the angle

defines the rotation about the a_-axis, which coincides with the x'-axis,

of the auxiliary system x_r'_ relative to the system a_z'; lastly, the angle T

defines the rotation about the y-axis, which coincides with the _-axis, of the co-

ordinate system xyz relative to the system zV_. The direction cosines of the

system zyz relative to the system z°_ are

zo p zo

z cosacosT--sinasin_sin'f sin"eos'p_-cos"sinJisin7 ---cosJ3sin7

y --sl- _cos_ ©os • cosJ_ sinJJ (27)

z cos • sin "_-psin a sin _ cos *f sin ,, sin "f--cos • sin j] cos "f cos _ cos -f

In order to obtain the projections of the angular velocity of the coordinate

system zyz on its own axes, it is necessary to take the sum of the projec-

tions on these axes of the angular velocity of trihedron x°_ and of the re-

lative angular velocities d_/dt of the system _'y'f relative to the system

xOyO_, d_]dt of the system a_'_' relative to the system a_f, and dT/dt of the

system zyz relative to the system zwyw_ '.

The vector of the angular velocity d"/dt is directed along the _-axis, that

of d'_/dt along the If-axis, and that of d_t/dt along the :d-axis. The _-axis,

which coincides with the x"-axis, is the intersection of the planes x°_ and _;

it forms angles -f, 112,_, and 1]s,_--" f respectively with the axes of the coordi-

nate system xyz.

• Such a relationship was obtained earlier by Zheleznov in his improvement on the well-known Schuler

condition H _m|RUcos? in the approximate theory of gyrocompasses. When the Schuler condition

is satisfied, the deviation of the gyrocompass is to a certain extent independent on of the ship's velocity

and acceleration and is mainly determined by (25). Other scientists (Sleeve, Roitenberg) improved

Schuler's condition (for the case of high latitudes) by taking into account only the eastern component _'_

of the ship's velocity; this led to the expression H _ra/(R/] _ ?-[- V£).
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The following expressions for these projections are thus obtained from (27):

m _-_ w° (cos g cos T -- sin -, sin p sin T) "_-

_- w_. (sin • cos T-J- cos • sin p sin 7)- ]-

+ (_ + a__-cosp,,uT)+ _ _ T;

u) o d_ d¥.
= w_.(--sina cos _)-J-_ cos ,,cos _ -J-(_z.-_-_) sin_ 4- _, (28)

w = w_ (cos g sin T nt" sin g sin ]3cos T)-J-

w_. (sin g sin T -- cos g sin _ ea)s T) -}-

cos T -{- _ sin T.

z.'r

.. Ir.f

x:z"

FIGURE 6 FIGURE q

Here w_, w_, _ are the projections of the angular velocity of the tri-
hedron x°y°_ on its own edges. It follows from (11) that

4. . __ "_
w°_ _-_-, wf_--_- , (29)

where o°_ and IPf are the projections of the velocity of the trihedron apex
on the _- and l_-axes. However

vo.=o, (30)

since by assumption the velocity of the trihedron apex is along the _r_-axis.

Inserting (29) and (30) into (28)yields:

-_, _--- _- (sin cLcos T -_" cos a sin _ sin ¥) -_-

ap
nt- (to "_ _-]]) (--cos _ sirl T) "_ _ cos r;

o_,=_-eos"cos[3 4- =nt-_i sinp+_,

w, _ _-" (sin a sin T _ cos • sin p eos ¥) -{-

+(.
Here

V-:-_, w--_w 0 (32)

are respectively the velocity of the trihedron apex relative to the sphere S
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andtheprojectionof the angular velocity of the trihedron apex on the nor-

mal to the sphere. The expressions for %.row, % have to be inserted into
the left-hand sides of (8).

We now find the right-hand sides of 48). The force of gravity F is, in

accordance with the assumption under 3, directed toward the center of the

sphere S and acts on the center of gravity of the frame. It is almost paral-

lel to the ze-axis. In accordance with 427), the projections of P on the =-,
y-, and z-axes linked to the gyro frame are

F.=FcmpsinT, F_-- --F sin p, F.-----Fcmpcos T. 433)

In order to find the corresponding projections of the inertia force Q due

to translational motion, we use (12), which, with the aid of (29), 430), and

(32), can be rewritten

du w#
Qa,=--m_ , q_=--m_, Qe,=m T . (34)

The same result could have been obtained directly by taking into account
that

h z_
w,=_. w,=_-, w,----_- (35)

represent the projections of the acceleration of a point moving on the sphere
on the edges of the Darboux trihedron moving along the trajectory of this

point. The radius of geodesic curvature Pt of the trajectory*, the angular

velocity _ of the Darboux trihedron about the normal to sphere 8 (about the

z°-axis), and the velocity of its apex u are connected by the relationship

o"- mpr 436)

The following expressions for the projections of the inertia force Q on

the =-, V-, and z-axes linked to the gyro frame are obtained from 434)
and (27):

d_

Q, = -- m _- (cos = cos T-- sin ,, sin psin 1) --

-- m=u (sin ,, cos 1 -J- cos = sin p sin 7) -J- m_- (--cos psin 7);

du e=
O_ = -- m _ (--sin ,, cos _l) -- m=v cos = cos p -_-m -_ sin p;

4e
O,= -- m _ (cos = sin I-I- sin = sin _ c_s T) _

(37)

-- m=u (sin a sin -f -- cos z sin p cos 7) "{- m _-_cos p co8 T"

The center of gravity of the gyro frame has the following coordinates in
the system =yz: x_-._-g,=O, z,_--l.

The moments M.. M r, M, of the forces acting on the gyro frame are
therefore

M,=I(Fv--_)Jr-M* `, Mw=--I(F.-']-Q.)-_-M_, Mz-'-M" n (38)

where Ms*, M;. M* are the moments about the =-, l/-, and z-axes due to
all forces except gravity and inertia forces acting on the gyro frame.

The reaction at the frame suspension point, or forces due to fluid pres-

sure on the gyrosphere in an Anschiitz gyrocompass give rise to moments

about the z-, I/-, and z-axes which are separately equalto zero. Substituting

* Rashevskii, P.K. Kurs differentsial'noi geometrii (A Course in Differential Geometry).--GoltekhizdaL 1986,
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in (38)for F=, F_, Q., and Q_ their expressions from (33) and (37) yields .

d" (__si n (
=n -- F)sin _] -1L M_,M =,E--m _,. • cos_)--.,=voos,, _o.p+ m

_-(cos = cos T -- sin = sin _ sin T}-"

-- m=v (sin = cosT _ cos - sin _ sin T) -J- (39)

Jr- (m ; -- F) (--cos _ sin "f)] "lL M;,

M ._ M*,.

These expressions have to be inserted into (8) together with (31). The

following equations of motion of the gyro frame relative to the Darboux
trihedron are obtained as a result:

4p. ]"Jr _ sin I 2B cos, = rnl _ sin = cos _ -- mllov cos " cos _ -1L

vt
+ (ml--_ -- lF) sin 0 -_" M_*;

2B¢os, = mt _, {oos=oosT-- si. =sin p$ill 1) +

..J_mhou(sinacosl-J-cos=sinOsin.O.. j- (40)

;-- IF)cos•-_-(ml [3sin'f _t- M_;

[_ {_n=cosT+ cos=_. _s_.T}--
d=-(° + +sin T nu _ cos 1] 2B cos e=M_*;

Equations (40) hold for any gyro frame. By inserting into them

M*==M*_=M*_=O, (41)

and expression (17) for the moment N(¢), the equations of motion of a gyro-

compass having the properties described under (3) are obtained. As was to
be expected in this case equations (40) become identities if

a_ ____l._-=0 , (42)

and if _ satisfies (19). The functions u=v(0 and ==to(t), which define the

motion of the gyro-frame suspension point on the sphere S, are in this case

arbitrary.

When (42) and (19) are satisfied, the gyro frame will move in the manner

described under 3 and 4: its angular momentum vector, directed along the

g-axis, will throughout remain perpendicular to the vector of the velocity
relative to sphere Sol the suspension point; the z-axis, which is parallel

to the pivot axes of the gyro frame housings, will always pass through the

center of sphere S, and therefore also through the center of the Earth.
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'6. Theequationsof motion(40)of thegyro frameaboutthex °-, y0_,

_-axes of the Darboux trihedron moving along the trajectory of the suspen-

sion point are too complex in a general study of the motion of the gyro

frame. Only small motions of the gyro frame in relation to this trihedron

will therefore be considered; accordingly, only first-order terms in _, _, T

and their time derivatives will be retained in (40).

Using (41) and (17), we therefore obtain

" " [md" --(F--moo..=,
deB ,.

+
Lo[3/ 2B sin •_ cos s sin ,,

These equations determine the perturbations of the motion of the com-

pass gyro frame relative to the basic motion for which -, _, T, and e are

given by (42) and (19). If for the basic motion t is denoted by a(t), then

•_-a(t) _-_, (44)

where _ is the same order of magnitude as co,p, and 7.
Inserting (44) into (43), neglecting all terms of higher order than the first

in _, _, T, _ and using

2B cos a (t) = mlp(t), (45 )

which follows from (19), lead to the following equations describing the per-

turbations of the motion of the gyro frame:

• d" . du __
--mw _ -- m_ _7 _ "1- lFp =--w 2B _ sin a,

, (2Bs,.o)
dp , (46)

d'f 2B tsin a
_- -{- _ =--®_-

Let the velocity of the apex of the Darboux trihedron and its angular

velocity w about the normal to the sphere S be constant. System (46) then

becomes a homogeneous system with constant coefficients. Inserting into

it the approximation:
m_ _ _ (47)

F -- --a-= F = rag.

where g is the gravitational acceleration, gives the following roots of the

expanded determinant of system (46):

+i(,+.), ±_(,--®). (48)
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Here v---_/_- is the frequency corresponding to the Schuler period

T---2,t _. (49)

According to the approximate theory of the space gyrocompass developed

by Geckeler*, the perturbations of the motion of a gyro frame consist of two

independent oscillations, each having a period equal to the Schuler period.

In one mode only a and _ vary, in the other only 7 and _. It is seen from the

above discussion that Geckeler's theory is rather inaccurate, although in

general it leads to correct expressions similar to (17) and (19) for the char-

acteristic parameters of the sensitive element of a gyrocompass whose xy

plane remains throughout tangential to the sphere S (Geckeler considered

this plane to be almost horizontal).

7. If (47) is valid, equations (46) can also be integrated when v and

are variables, i.e., for an arbitrary motion of the suspension point on the

sphere S.

In fact, inserting (47) and v---/_-, equations (46) become

d w _ 28_sing d / 2B_sine _

--J- v u d'T 2B t sin • (50)

We now define the following two complex functions of the real argument t:

Im l 2B _in •
"(t)= t¢/_+ p, _(t)=T--: ,.l_ • (51)

Using them, system (50) can be replaced by the two equations

d_
tvx _--_- |'qL-_-- f_. (52)

This system can be separated into two independent equations:

4
d-_(" + _') + _(" -- ®) 0 + _') ---- O,

(53)4
._ (: -- _) + t (, + .,) (. -- _) = o,

which are easily integrated. The result is

[i, ]x + _,= (,1 + _,,)exp --t , --,,) dt ,
O

0

(54)

where % and Po are the values of x(t) and p(t)for t---O.

Using (54) and (51), the variables a, 13, 7, _ can now be given explicitly

as functions of their initial values %, _o, 7o, _e and of the time t.

* Grarnmel. R. Der Kreisel. Vol. II.-- F. Vieweg, Braunschweig. 1920, [Translated into Russian. 1952.]
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Whent0=const, equations (50) become linear differential equations

with constant coefficients in which the variables are v_t/g_, _,T, and

2B 8sina/ml g_. sin a is determined in accordance with (45) by

sin o-- _rt (_tPl2--_l" (55)

In accordance with (23), (24), and (32),

-- Vx. dl
o,-_ Usin ?t'_" tg?--_, (56)

where _) is given by (25).

In particular the angular velocity _o is constant when the suspension point

moves uniformly along the Equator or any parallel.

8. The above theory of small motions of a gyro frame about the moving

axes of the Darboux trihedron moving along the trajectory of the suspension

point shows that undamped oscillations are likely to occur. The problem of

the stability of the motion defined by the nonlinear equations (40) requires

further investigation.

Introducing in the gyro frame's mechanical system a damping similar

to that used in Anschiitz double-gyrocompasses causes ballistic deviations,

i.e., additional variations of _t, _, T, and _, determined by the laws govern-

ing the acceleration of the suspension point in its motion on the sphere S.
A special analysis is needed to calculate these deviations.

We shall determine further on the perturbations introduced in the motion

of the sensitive element of the double-gyrocompass by the deviation of the

Earth's shape from a perfect sphere.
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Appendix 3

DETERMINING THE POSITION OF A MOVING OBJECT

BY GYROS AND ACCELEROMETERS*

The problem of the so-called autonomous determination (i.e., a determi-

nation which uses no external reference points) of the position of a moving

object (inertial navigation)is of great practical importance.

Because of the insufficient accuracy of the sensitive elements available,

namely Newton-meters (accelerometers), gyros, and integrators, no practi-

cal solution to this problem existed until recently. However, instruments

developed recently** make it possible to solve this problem with a satis-

factory accuracy, provided the duration of the object's motion is compara-

tively short.

This appendix considers the theory of one method of autonomous determi-

nation of the position of a moving object, i.e., of inertial navigation.

The important problem of evaluating the inaccuracy in determining posi-

tion, caused by the so-called instrumental errors of the integrators,

Newton-meters, gyros, and other elements of the system, is outside the

scope of this study. It will therefore be assumed that the above-mentioned

elements are perfect, i.e.; operate without errors. The electromechanical

system on which solution of the problem is based, will therefore be treated

under the assumption that all its parameters correspond exactly to their

theoretical values, and that there are no mechanical faults (such as inac-

curate assembly and lost motion in the transmissions). The initial condi-

tions of the system's motion are arbitrary.

I. We begin by solving the problem of the autonomous position determi-

nation of an object moving along an arc of a great circle of a nonrotating

sphere S whose center coincides with that of the Earth (Figure l). In the

simplest case this corresponds to a motion at constant height above the

Equator. The determination of the object's position relative to the Earth

itself thus becomes simply a determination of the duration of motion.

Let two coordinate systems xy and }*_]* with a common origin be fixed

at some point of the moving object (Figure I). We shall call this point the

* PMM, Vol. 21, No. 6. 1957.

** We suggest the name "Newton-meters" for the instruments usually known as accelerometers, since

they measure tile combined action of gravity and the inertia forces due to translational motion

on their sensitive element. The force tncasured is in fact the projection of the resultant of these

forces on a direction fixed relative to the instrument, which we shall call the sensitivity axis of
the Newton-meter.

The inertia forces due to translational motion should obviously be determined relative to a re-

ference frame fixed to the instrument itself. Coriolis forces usually do not affect instrument readings.

"** Draper, C.S., W. Wrigley, and L.R. Grohc. The Floating IntegratingGyro and its Application to

Geometric Stabilization Problems on Movhrg Bases.--Aeronautical Engineering Review, 15(6): 46;.

June, 1956.
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ob}ect center. The z-axis of the coordinate system _ is directed along the

object's velocity vector v. The y-axis is the prolongation of the Earth's

radius to the moving object's center. The axes of the Newtonian coordinate

system }*_]* have a fixed orientation relative to the sphere S.

Let the two coordinate systems coincide at t=0. Subsequently, the co-

ordinate system xy will rotate through an angle ?, varying with time, rela-

tive to the system }*_]* which has a translational motion. This angle is re-

lated to the distance sm_$(t) traveled by the object center from the initial

point:
$

?=_-. (1)

Here R is the radius of the great-circle arc along which the object center
moves.

FIGURE 1

Let a platform (I), stabilized by gyros, be mounted on the object (Fig-

ure 2). In the simplest case this platform is oriented by follow-up systems
in such a way that it is always perpendicular to the angular momentum vec-

tor of a precision gyro. The pivot bearings of this gyro's outer ring are

mounted on the stabilized platform.

Let the angular momentum H of the gyro lie in the }*_]* plane, and let a

moment M _-M (t) be applied to the pivot axis of its outer gimbal ring

(Figure 2). In this case the precession of the gyro also takes place in the

}'71" plane. Following the gyro, the stabilized platform will rotate at an

angular velocity
a_ x (:)
_:-_--, (2)

where _ is the angle between the vector H and the _l*-axis.

Let a Newton-meter (2) be mounted in the plane of the stabilized plat-

form (1) (Figure 2), and denote by a=a(t) its instantaneous reading. If the

sensitivity axis of the Newton-meter does not coincide with the z-axis, the

reading a(t) of the meter (Figure 3) will be:

U2,. =(i_ .. .,.,_-_ COS a. (3)

Here j is the gravitational acceleration, and

__?--@ (4)

the angle of deviation of the stabilized platform from the horizontal direction
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(more accurately, from the direction perpendicular to the Earth's radius).

If the function a(t) obtained as the Newton-meter output is fed to an integrat-

ing unit, a new function t

K _a(tIdt-]-m, (5)
e

is obtained, where K and m are constants whose values will be determined

below.

FIGURE 2 FIGURE 3

The function (5) can be reproduced as a moment M(t) acting on the gyro.

Substituting this expression for M (t) in (2) and integrating yields

# #

o @

where _0 is the angle of inclination of the stabilized platform to the hori-

zontal plane (more exactly, to the z-axis or the }*-axis coinciding with the

latter at that instant) for t_0.

Inserting (I) and (67 into (4) yields

# t

• g a (t)dis -- _ (7)"=W--W- I I t--,_

@ @

from which a differential equation for the function _,_g (t) and its initial

conditions can be established. In fact, substituting t_-_0 in (7) gives,

since s (0)=0,

•(0)= --%, (8)

which could obviously also have been obtained directly from (4).

entiating both sides of (7) with respect-to time, we have
#

&, t dz K r - -

o

It follows that the initial value of the tL,-ne derivative of a(t) is

Differ -

(9)

-- _, (10)
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where v(O) is the initial value of the velocity _- of the object center relative
to the sphere 8.

A second differentiation of both sides of (7) yields, after subsituting (3)
for a (t),

£ .
--_- _os a)d-_ • (11)

When the function $----_#(t) is given, this is a second-order differential

equation for determining the angle of inclination I----a(t} of the stabilized

platform relative to the horizontal plane. The initial conditions for this

differential equation are given by (8) and (10).

2. The differential equation (11) has the particular integral

I_O, (12)

if the equality
! K

W-'T, (13)

is satisfied, and if the initial conditions are such that

_'(0)= 0, d,(0) ---0. (14)
dl

Equation (13) defines the parameter K. The first of conditions (14), to-

gether with (8), state that for t_0 the stabilized platform will be parallel
to the horizontal plane, i.e.,

_0"--0. (15)

The second of conditions (14), together with (10), yield

(16)

This defines the value which the parameter m must take in the device

for which (5) is true.

Thus when (15), (16), and (13) are satisfied, the stabilized platform will

remain horizontal (more exactly, perpendicular to the Earth radius) through-

out any arbitrary motion $---s(t) of the moving object.

a_s
Let g--0. Inserting this into (3) yields a(t) _ --. Substituting this ex-dil

pression together with (16)and (13)into (5)yields:

>IK dt-Jpv(O =Kv(t). (17)

It follows that in this case the function (5) represents, except for the

constant factor K, the instantaneous value of the object's velocity v_v(t)

relative to the sphere 8. If the value of (5) is fed to a second integrating
unit, the distance s(t) traveled by the object from its initial position will be

obtained as output (omitting the factor K).

3. In the general case g_0, the magnitude

K a(t)dt_-m dt, (18)
o

computed by the integrating units, will differ from Ks(t). In accordance
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with (7) and (13) the difference between these two magnitudes is

_--.s(t)----K Ka(tldt-_-m dt_-R"(t}-_-R_o. (19)
OlO

The error _ in the determination of the distance s(t) by this method is

therefore

_=R[a(t)--a(0)l, (20)

where a(t) is obtained from (ll) and the initial conditions (8) and (I0) when

condition (13) is satisfied.

The angle of inclination a (t) of the stabilized platform to the x-axis can

be assumed to be small, so that all terms in (II) of higher order than the

first in a can be neglected. Using (13), equation (II) then becomes the

homogeneous linear differential equation

(21)i (j p,-- _-)_--0.dr,÷ _-

The following approximation holds for low velocities:

! -- _- _ g---_ const, (22)

where g is the gravitational acceleration in the region of motion of the ob-

ject. In this case the solution of (21) is a harmonic function

•(,)= •(0)0os,t '" ,t (,.= . (23)
whose period is

T:2_ _____ 84.4 min

known in the theory of gyroscopes as the Schuler period.

It thus follows from (20) and (23) that in the general case the error in

the autonomous determination of the object's position has an oscillatory

pattern.

4. Other methods exist for determining the position of an object moving

along the arc of a great circle. These usually lead to similar results.

Let the platform be stabilized so that it remains parallel to the _-axis

during the ob]ect's motion. This can be obtained by means of free gyros

or by following the stars (astronavigation)': ,. In this case

tt

00

When certain equations similar to those above are satisfied, the follow-

ing relationship is obtained:

_----RX. (25 )

Ingenious devices exist which carry out the necessary double integration

in one step instead of two (the Bojkov integrator**).

• Wrigley, W., R.8. Woodbury, and ].Hovorka. InertialGuidance.-- PreprintNo. 698. Instituteof

AeronauticalSciences,New York. 1957.

e, Bojkov,].M. Einrichtungzum Iviessenyon Wegstrecken.-- Deutseh. PatentNo. 661822, KI.42,

Siemens Apparate und Maschinen, G. in.b.H. Berlin.2 June, 1938.
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5. We shall now discuss the problem of determining the position of an

object whose center moves arbitrarily on the Earth's sphere. We assume

that a platform is stabilized by gyros in such a way that angular velocities

Ms _ Ms _ Ms
ws_-'_-, _ --'-_-, _,--"_" (26)

about the x- and [/-axes lying in the plane of the platform and about the

z-axis normal to this plane are caused by three torques M I, Ms, M s.

-f

,./ / I

11 I - Np

FIGURE 4

Figure 4 gives one possible way of obtaining such a stabilization. Plat-

form P, mounted on the object in gimbals (not shown on the drawing) is

continuously maintained perpendicular to the axis of rotation of gyro I by

means of follow-up systems. The outer gimbal ring of gyro I is carried in

bearings mounted on the stabilized platform in such a way that its pivot axis

lies in the plane of the platform. Whenthe follow-up systems work perfectly,

the inner-ring pivot axis or, which is the same, the pivot axis of the gyro

housing, lies in the same plane.

Let M l and M 2 be the torques applied respectively to the pivot axes of the

outer gimbal ring and of the housing. Denote these axes by x and I/ re-

spectively. The torques M I and M 2 cause precession of the gyro and, con-

sequently, rotation of the platform about the x- and [/-axes at angular veloc-

ities 0Jz and c% given by the first two of equations (26).

The outer gimbal ring of gyro II (Figure 4) which has the same angular

momentum /] as gyro I, is carried in bearings mounted on platform P in

such a way that its pivot axis is perpendicular to the plane of the platform.

A corrective torque is applied to this axis so as to cause the axis of rota-

tion of gyro II to take up a position parallel to the plane of the platform.

The x-axis, fixed rigidly to the stabilized platform, is made to coincide

continuously with the axis of rotation of gyro If, by means of a follow-up

system.

The torque Ms, applied to the pivot axis of the second gyro housing,

causes a precession of the gyro and, as a result, a rotation of the plat-

form at an angular velocity w, about the z-axis. This axis is perpendicular

to the plane of the platform and forms together with the z- and ]/-axes a

Cartesian coordinate system zUs , fixed to the platform. It will be assumed

that the origin of this system coincides with the object center. The magni-

tudes Ms and c% are related by the third of equations (26).

Two Newton-meters (not shown in Figure 4), whose sensitivity axes

are directed along the x- and [/-axes, are mounted on the stabilized plat-

form in the vicinity of the origin of the coordinate system zVz.
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Let the object center move arbitrarily on the Earth, and let the torques

M 2 and M s be related to the readings am and a w of the corresponding Newton-

meters by the formulas:

# #

(27 
o o

Integrating units must be provided to create the torques M, and M s.

The values of the torque M s and of the parameters K, m 1, and m z in (27),

required to maintain the platform in a horizontal plane will now be found.

The projections on the z-, y-, and z-axes of the acceleration of the sys-

tem zV: relative to the sphere S are*

dt T"

wv_"_at (28)

dP I

where v=. v_, and v, are respectively the projections on these axes of the

velocity of the coordinate origin relative to the sphere S.

The projections of the force of gravity on the x- and y-axes vanish in

this case. It follows that the Newton-meters measure the accelerations

w= and w I directly. The following equations are therefore obtained in ac-

cordance with (26) and (27), taking into account that _,_-_0:

#

K f ( d__/e__._ ) ml% _ _ -_ =_= dt tl '

o (29)
t

K dr.
_, _lt_I(_j_____%v,)dt + m,

o

Since the plane of platform P must remain horizontal throughout the ob-

ject's motion, and since the ,--axis is directed along the Earth's radius,

the following equations *_::must be substituted into (29):

v.-= w_R, vy= _ ==R. (30)

Expressing _= and w_ in (29) by means of (30) yields

t

KR fle_ z R

o
t

O,=T jt...___..l._gR t/'d". %v.)dt 4;- _--rt_. (31)

0

These equations must be satisfied for any arbitrary variation of v= and vu,

i.e., they must be identities. This is, however, only possible if the

* suslov.G. K. Teoreticheskayamekhanika (TheoreticalMechanics).-- Gostekhizdat.1944. [cf.

Goldstein,ClassicalMechanics. p.135.-- Addison-Wesley. 1951.]

** Ishlinskii,A. Yu. Ob otnositel'nomravnovesiifizicheskogomayamika s podvizhnoitochkoi opo_]

(The RelativeEquilibriumof a PhysicaIPendulum witha Moving Pointof Support).- PMM, Vol. 20.

No.3. 1956.
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following conditions are satisfied:

KR
-_- --- i: % __ 0; m_----KvW(0); m2-- Kv_ (0). (32)

The first of these conditions is identical with (13), the second leads, in

accordance with the third of equations (26), to

Ma---0. (33)

Finally, the last two conditions connect the projections on the z- and

//-axes of the initial velocity relative to the sphere S of the moving object
center with the parameters ta1 and m z of the integrating units.

6. The substitution of (27) and (33) in (26) shows that the projections

_s and o_ of the angular velocity of the stabilized-platform are transformed

by the integrators into known time functions. In addition, we--_0, and the

z-axis is directed along the Earth's radius. This makes possible in princi-

ple the continuous determination of the object's position on the Earth and

of its course.

$

FIGURE 5

Consider the so-called geographic trihedron |_: (Figure 5), whose

apex coincides with the origin of the coordinate system zVs (i.e., with the

object center). The _-axis is directed to the east, the 1j-axis to the north,

and the g-axis upward along the Earth's radius. The projections of the

absolute angular velocity a of this trihedron (i.e., of the angular velocity
relative to the sphere S), are*

Vx Vsut_ R ' u_---'_ -JI-Uc°s?' Ut--- tg?-[-Elsln?. (34)

Here U is the angular velocity of the Earth, _ is the latitude, V t and V v
are respectively the eastern and northern components of the velocity of

the object center relative to the Earth. Obviously

a_ v.=n ,l,Vt_-Rc°s?_i', _ , (35)

where k is the longitude.

* Bulgakov, B.V. Prikladnaya teoriya giroskopov (Applied Theory of Gyroscopes).-- Moskva, Gostekhizdat.

1955. [English translation, IPST. 1960.]
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U)_t

The _-axis coincides in this case with the z-axis. The projections

w_, ,D,are therefore related to ut, u_, and uc as follows:

w=--" ut cos X-'l-u_ sin X,

%---- --u_ sin X_-u_cos X,

w,_ uc-J- _- ,

where X is the angle between the E- and z-axes (Figure 6).

(36)

We note that _,._0, and that w,-_-c%(t) and w1_c0_(t ) are known functions

of time. Then inserting (34) and (35) into (36) leads to the following system

of three differential equations with three unknown functions y (t),),(t),and

x(O:
dX

x+ (u+ =.,(t);
dt

_--ttsin X nL (U- }-_i)cos _ cos Z -_--,(t);
(37)

U a_ . _nt+-_-) s,n_+-Z/-=0.

When the initial conditions _(0), k(0), and X(0) are known, i.e., when

data on the object's position and orientation at t-w-0 are available, equations

(37) can be solved by a computer. For this it is convenient to write them in

an explicit form with respect to the derivatives:

d_
= -- .. (t) cos Z + o,_ (t) sin _,

dk w. (t) sin "_-_- Wlt(t) cos X
--= -- U-_ , (38)
dt cos ?

d_ -- -- [_. (t) sin X nu u,_,(t) cos _] tg ?.dt--

Having determined the functions ¢p(t)and z(t), it is possible to find the

object's course, i.e., the angle x between the vector of its velocity relative

(North) (North)

FIGURE 6

_(East)

FIGURE 7

to the Earth and the local meridian (Figure 7L In accordance with (35)

and (38), z is determined by the equation:

Ms Ucos_--w.(t)sinT[--u;(t)cos_[
tgx-----_-- _"(t) OOSX--'_(t)_X

(39)

296



• We shall now study the perturbations of the motion of platform P, assum-

ing that its plane is not strictly horizontal at t:0, and that conditions (32),

determining the parameters m I and m i, are satisfied within a small error.

It will however be assumed that the first two of conditions (32) are rigorously

fulfilled.

Introduce a Darboux trihedron _ with _- and _-axes tangential to the

Earth's sphere*, and therefore also to the nonrotating sphere S. The z°-axis

is directed along the vector v of the velocity of the trihedron apex relative to

sphere S. The trihedron z°V°z ° will be called the natural Darboux trihedron.

Let its apex be at the center of the moving object, i.e., at the origin of the

coordinate system zyz fixed to the stabilized platform. The projections of

the angular velocity w° of the natural Darboux trihedron on the z °-, _-, and

_-axes are
u

w°'_0'8" w°f---- _'-, w_ _. (40)

w 6_(t) defines** the geo-For a given velocity v_v(t), the function "

desic curvature of the trajectory of the Darboux trihedron apex on the

sphere 8.

Z" ,Z O,Z'

Z o_

y'

- ,,/,,'/ xf
_'" Z,Z"/ J

Z

FIGURE 8

The projections on the x°-, y0_ and _-axes of the apex acceleration re-

lative to the sphere S are

do vt
wso _ -_, w_ --_ 6_v, w_ _ -- _. (41 )

The direction cosines of the system xyz relative to trihedron _U°_ are:

zo _/o so

= cos _ cos _ -- sin I sin • sin [3 sin _ cos p + cos _ sin a sin p --cos a sin [i

y --sin1 cos a cos 7 ¢osa sin a (42)

z cos 7 sin [3-_- sin 7 sin = cos _ sin _ sin p -- cos 7 sin a cos [3 cos a cos [3

The angles _, _ and T determine the orientation of the coordinate system

xl/z relative to the trihedron _.oyo_ (Figure 8). The angle T is the angle

through which the auxiliary coordinate system x'I/'z',whose z'-axis coin-

cides with the z°-axis, is rotated relative to the Darboux trihedron; the

• cf. Appendix 2, p. 281.

Cf. Appendix 2, p. 284.
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rotation is counterclockwise if viewed from the positive =_-axis, and is .

intended to make the x'-axis lie in the =z plane. The angle = is similarly

determined by the relative position of the coordinate system _=' and the

auxiliary coordinate system _=_, whose z'- and z_-axes coincide. The

=_-axis of the latter coordinate system is likewise made to lie in the zx

plane, as a result of which the _'-axis coincides with the y-axis.

For =>0, the rotation of the system zxgw_' relative to the system _='

is counterclockwise if viewed from the ='-axis (or, which is the same,

from the positive _'-axis).

Lastly, the angle _ is the angle between the z- and _-(='-) axes of the

coordinate systems zVz and ="]_'='. The sign of _ is determined in a similar

way to that of T and a.

The angular velocity m of the coordinate system zUz relative to the sphere

S represents the geometric sum of the angular velocity w ° of the natural

Darboux trihedron relative to this sphere and of the three relative angular

velocities dT/dt, d=/dt, and d_]dt. The latter are respectively the angular

velocities of the coordinate system z'_= _ relative to the trihedrom _y0_, of

the system _,]fza relative to the system z'V'_ and, finally, of the system zyz

(the stabilized platform) relative to the system z"y_= ".

The vector of the relative angular velocity dT/dt is directed along the

=°-axis, that of the angular velocity d_/dt along the y-axis, and that of the

angular velocity d=/dt along the z_-axis. The x'- and x°-axes coincide when

Tm_0; this makes it possible to find from (42) the direction cosines of the

angular velocity d,,/dt relative to the coordinate system xgz (Figure 8).

Thus, the projections to=, w_, and w, of the angular velocity of the stabilized

platform on the axes of the coordinate system zgz are

P

% _-_ _- (sin T cos _-_- cos'f sin = sin _)-_-

" C "=r = _- COS "f COS = -{'- _-_- sin = -1L"_-/; (43)

U • •

=, ----_- (sm-fsm_-- cosi sin,, cosp)-t-

Jr -F_') cos p.=cosP-I--Z/sin

By (42) and (41), the projections w:,, w_, and w, of the acceleration of the

origin of the system zyz are:

4p

w. = _}- (c_s T cos _-- sin T sin = sin ]3)-l- _v (sin T cos I_-I-

-]- cos T sin = sin _) -- _ (--cos a sin _),

w_, _-_- (--sin T cos =) n t- _v cos T cos = _ _- sin a, (4 4 )

4=' (cos sin _ -_- sin T sin = cos _) -_- _v (sin 1_ sin _ --

-- cos I sin = cos p) v,
In contrast to 6, the projections of the force of gravity on the z- and

]/-axes differ from zero. As a result, a Newton-meter whose sensitivity
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axis is directed along the z-axis will now measure the difference between

the acceleration w s and the projection on the x-axis of the gravitational ac-

celeration j, which is directed along the _-axis toward the Earth's center.

It follows from (44) and (42) that the readings am and as of the Newton-
meters must be expressed by the formulas

Sv
a, _ _/- (cos T cos [3-- sin T sin _, sin _) -]- _v (sin T cos ]3-J-

sin a sin _) --]- (j-- _),_) (--cos • sin÷ cos T
(45)

6; vz
cos_)+ _vcosTcos• + (/- _) si_ay T Or.

The torques M z and M 2 are given by (27), it being assumed that M_ is

zero. Substituting these values in (26) yields

t

o.=-
0
$

K mt

0

®z=0.

The left-hand sides of these equations are given by (43), and the in-

tegrands by (45). Inserting these into (46) for given functions v(t) and _(t)

yields a system of equations for determining the time functions a(t), _(t),

and T(t).
Time differentiation of the first two of equations (46) yields

dwz K dw_ g a= _ O, mz _ O. (47 )-_F ÷ _-av=O' dt s

Assuming that ctand _ in (43) and (45) are small, terms of second and

higher order in these variables can be neglected. Thus (43) and (45) be-

come

v . d7 da

, . d't, . d_
_,='_'©°ST÷ l_t _l_t_,

v . dT
®,-----_-(PsmT-- • cosT)÷ &÷-aT,

(48)
VS

d, ÷ &Vsin (j-- _-)_,a, _ _T cos T T --

ay= --_sin'f ÷&vcosT +(j---_-)_'.

Since _a_0, it follows from the third of equations (48) that

+ _ = _ (,,cosT- P_i. T). (49)
Thus the terms

_ d7 (50)
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in the first two of equations (48) are of the second order in g and _ and can

therefore be neglected. Therefore, up to first-order infinitesimals:

v sinT -¢at-_ -- v 4_, _-COST-{-_. (51)W m _ _- Wy

Inserting the value of • given by (49) into the last two of equations (48)

yields:
d

a.= _/- -FT (" cosT --
d . vt

a_ __ __ __ (v sm T) _j.. __ (a cos T _ _ sin T) cos T _j_ (j__ ;)," (52)

Inserting (51), (52), and (13), into the first two of equations (47) yields

dta
dr=_ i v,-- - ___ -_-f (= sin 1-{- _ cosl) sin l;

(53)
-- _-i (" sin _,-{- p cos"f)cos_'.
dtt

Together with (49) these two equations form a system of differential equa-

tions for determining the functions g(t), _(t), and "((t);',_.

We define two new variables } and _]as follows:

_ _-- = cos "/-- _ sin's,

.q m_ = sin 1_{_ _ cos 1," (54)

Substituting these variables for = and _ in (49) and (53)yields:

dt---f-{-2-_'_ -i-_d,_ " _dt / " It"-- '

d_ 2 d7 d_ . d2] /¢Z7 X_ f vs- (55>

dt R-

d l d_T
Substitute in the first two of these equations the values of -_- and _-_ ob-

tained from the third. Neglecting second-order terms in },_],and also

their time derivatives, leads to a system of two linear differential equations

with variable coefficients, which define the small oscillations of the stabil-

ized platform.

8. Putting aside the problem of integrating (55) for an arbitrary motion

of the object on the Earth, we shall restrict ourselves to the case &_--_const

andv_---const, which corresponds to a motion at constant velocity along a

great-circle arc on the sphere S. The motion relative to the Earth will in

the general case be along an irregular trajectory at a variable relative

velocity. Motion of an object at constant velocity relative to the Earth along

a parallel or along the Equator is an exception.

* For small oscillations of the stabilized platform equations (53) are identical with the equations of small

Oscillations of a physical pendulum whose point of support moves on the sphere _. The equilibrium

conditions of this pendulum relative to the natural Darboux trihedron are given in the author's paper:

Ob omositel'nom ravnovesii fizicheskogo mayatnika s podvizhnoi tochkoi opory (The Relative Stability

of a Physical Pendulum with a Moving Point of Support).- PMM, VoL 20, No. 3. 1956.
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If & and v are constant, system (55) reduces in a first-order approxima-

tion, after the variable T has been eliminated, to the following form:

dtE 2& 4_ +(_.__&,),,,t" _- _ _--0, (56)

d_--,,. _E --/j - _l
d--_n'--,_. _7 -r- _-_- -- w'-- _) 1 -----O.

This is a system of linear differential equations with constant coefficients.

For &-_0 and u_cnnst (motion along a great-circle arc), system (56)
can be separated into two independent equations:

,r,_ __ _-_-----0,dt I
(57)

,,, _-_--_)_=0.

The first of these corresponds to angular oscillations of the platform

about the _-axis of the natural Darboux trihedron, the second to oscilla-

tions about the x°-axis (which lies in the direction of the velocity vector _).

These oscillations have similar frequencies, if the velocity v is not too

large (i.e., considerably lower than the velocity of points on the Equator

due to the diurnal rotation of the Earth). The period is approximately

equal to the Schuler period (84.4 rain).

9. When the stabilized platform undergoes small oscillations, i.e.,

when _ and _ differ from zero, equations (30) will not be strictly satisfied.
In addition, equations (31) on which this method is based, will not be exact

identities, since the readings an and av of the Newton-meters include the

corresponding projections of the gravitational acceleration i-

When conditions (32) are satisfied, it can be expected that the errors

caused by these factors when determining the latitude and longitude of the

moving object and its course will have an oscillatory pattern. Further

studies are, however, necessary in order to determine the time variation

of these errors accurately.

I0. It was assumed above that the object's center moves on the sphere ,._

so that _t_0 in (28). We shall now show how to eliminate this restriction

and solve the problem of inertial navigation in the case of an arbitrary ob-

ject motion about the Earth.

Let a platform stabilized by gyros move in such a way that its plane re-

mains perpendicular to the Earth's radius. This again necessitates the ful-

fillment of (30), in which _ and vu are, as above, the projections on the

x- and y-axes of the velocity v of the center of the platform gimbals relative

to the sphere S, and ¢% and _oyare the projections of the angular velocity w

on these axes. The following equations must therefore hold:

,-- -_, w_=_. (58)

In contrast to (30), however, here R=R(t) is variable, being the distance

between the platform gimbal center and the center of sphere 8,

The angular velocities ,% and w_ are caused by precessional torques M I

and M s defined by the first two of equations (26). Substituting (58) in them

leads to the following expressions for the torques:

H Mz__. _ v.,,. (59)M,-----_-v,,
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Assume that in the vicinity of the gimbal center two Newton-meters

are mounted whose sensitivity axes are respectively directed along the =-

and y-axes lying in the plane of the platform. Their readings as(t) and as(t)

will not contain the projections of the gravitational acceleration i on the

x- and y-axes, since by assumption the stabilized platform remains through-

out its motion perpendicular to the line connecting the gimbal center to the

center of the Earth. The following expressions can therefore be written:

dvs d_w
a,(t)=w.=-_FnUwwv,--%v ,, a,(t)=wy=2i-nt-w,v,--w.v,. (60)

In contrast to the previous case, v, is not zero:

dR
v, _-_'i-. (61)

Assuming as before that Ms=0 , it again follows from the third of equa-

tions (26) that w,_0, i.e., that the platform will have no angular velocity o_

component along the z-axis directed along a radius of the sphere S. Be-

cause of this and of (58) and (61), equations (60) can be written in the form

-- dv s v s dR a,(t) a_, vv dRa*(t)_-d7 _ a at" _'-_-l- R dt " (62)

These relationships can be considered as differential equations. If their

solutions as(t), al(t), and It(t) are known, the functions vs(t) and v#(t), which

are required for determining the torques M 1 and M I which control the ori-
entation of the platform, can be found.

Equations (62) can be solved by quadratures:

[/ 1v,=-K_! R(t)as(t)dt-_- R(O)v.(O)

#

It follows from (59) and (63) that the torques M 1 and M s are functions of

the readings %(t) and av(t ) of the Newton-meters:

[i ]H It(t)a. (t)dt -[-It10)v, (0) ;

l (64)

M,:--_--K_( OR[!R(t)a.(t)dt-_-R(O).*(O)]

This means that units capable of multiplying and dividing the instantane-

ous values must be introduced in the inertial navigation system.
The variable It:it(t) in (64) is assumed to be known i,n advance. The

availability of a third Newton-meter, whose sensitivity axis is parallel to

the z-axis (the Earth's radius), permits the independent determination of

this function. The readings of this Newton-meter are

. . dv t
a, = w , -[- ! = _ "}-" sv _,-- 'Dyv s "}- ], (65)
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where

]_]o _ (66)

is the gravitational acceleration, which decreases inversely with the dis-

tance from the EarthVs center, and i0 is the value of this acceleration on

the surface of the Earth whose radius is R 0.

Inserting (58), (61), and (66) into (65) leads to the following differential

equation for the function R(t):

_,, _ + io-_,=,.(,). (67)

The unit which integrates this differential equation must be included in one

system with the integrators which reproduce the torques M Iand M_ because of

the relationships between the latter and R(t). As (59) shows, these torques

differ only by a constant factor from v,(t)and pr(/); it is seen from (67) and

(63) that v, and vy appear in the equation for R(t), while It(t)appears in the

equations for v, and vv.
The next step in determining the position of a moving object is the in-

tegration of system (38), _%(t)and w_(t), because of (58), (59), and (63), be-

ing known functions of time.
The problem of the stability of this inertial navigation system (allowing

for small oscillations of the stabilized platform) requires further study.
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